154 resultados para Nonminimal vector coupling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling the spectral emission of low-charge iron group ions enables the diagnostic determination of the local physical conditions of many cool plasma environments such as those found in H II regions, planetary nebulae, active galactic nuclei etc. Electron-impact excitation drives the population of the emitting levels and, hence, their emissivities. By carrying-out Breit-Pauli and intermediate coupling frame transformation (ICFT) R-matrix calculations for the electron-impact excitation of Fe$^{2+}$ which both use the exact same atomic structure and the same close-coupling expansion, we demonstrate the validity of the application of the powerful ICFT method to low-charge iron group ions. This is in contradiction to the finding of Bautista et al. [Ap.J.Lett, 718, L189, (2010)] who carried-out ICFT and Dirac R-matrix calculations for the same ion. We discuss possible reasons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a number of years, there has been a major effort to calculate electron-impact excitation data for every ion stage of iron embodied by the ongoing efforts of the IRON project by Hummer et al (1993 Astron. Astrophys. 279 298). Due to the complexity of the targets, calculations for the lower stages of ionization have been limited to either intermediate-coupling calculations within the ground configurations or LS -coupling calculations of the ground and excited configurations. However, accurate excitation data between individual levels within both the ground and excited configurations of the low charge-state ions are urgently required for applications to both astrophysical and laboratory plasmas. Here we report on the results of the first intermediate-coupling R -matrix calculation of electron-impact excitation for Fe 4+ for which the close-coupling (CC) expansion includes not only those levels of the 3d 4 ground configuration, but also the levels of the 3d 3 4s, 3d 3 4p, 3d 3 4d and 3d 2 4s 2 excited configurations. With 359 levels in the CC expansion and over 2400 scattering channels for many of the J Π partial waves, this represents the largest electron–ion scattering calculation to date and it was performed on massively parallel computers using a recently developed set of relativistic parallel R -matrix programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review the development of the time-dependent close-coupling method to study atomic and molecular few body dynamics. Applications include electron and photon collisions with atoms, molecules, and their ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rich model based motion vector steganalysis benefiting from both temporal and spatial correlations of motion vectors is proposed in this work. The proposed steganalysis method has a substantially superior detection accuracy than the previous methods, even the targeted ones. The improvement in detection accuracy lies in several novel approaches introduced in this work. Firstly, it is shown that there is a strong correlation, not only spatially but also temporally, among neighbouring motion vectors for longer distances. Therefore, temporal motion vector dependency along side the spatial dependency is utilized for rigorous motion vector steganalysis. Secondly, unlike the filters previously used, which were heuristically designed against a specific motion vector steganography, a diverse set of many filters which can capture aberrations introduced by various motion vector steganography methods is used. The variety and also the number of the filter kernels are substantially more than that of used in previous ones. Besides that, filters up to fifth order are employed whereas the previous methods use at most second order filters. As a result of these, the proposed system captures various decorrelations in a wide spatio-temporal range and provides a better cover model. The proposed method is tested against the most prominent motion vector steganalysis and steganography methods. To the best knowledge of the authors, the experiments section has the most comprehensive tests in motion vector steganalysis field including five stego and seven steganalysis methods. Test results show that the proposed method yields around 20% detection accuracy increase in low payloads and 5% in higher payloads.