360 resultados para Medical Illness
Resumo:
Medical students frequently have negative preconceptions of a career in Geriatric Medicine. In ta qualitative analysis of the free text from 789 response from Medical students in Scotland and Northern Ireland, we show that clinical attachment seffectively challenge negative student views and more positive statements about future careers in Geriatric Medicine emerged at the end of the attachment.
Resumo:
Introduction: When a medical emergency occurs in the prehospital environment, there is an expectation from the general public for medical students to offer assistance with a similar level of competence as qualified doctors. However, the question is raised; do medical students have sufficient training in first aid skills to fulfil the role expected of them?
Prior to the publication of the latest version of Tomorrow’s Doctors by the UK General Medical Council, a student selected component (SSC) in first aid was delivered at the medical school in Queen’s University Belfast (QUB), Northern Ireland. The overwhelming popularity of this SSC prompted a desire to investigate and understand students’ experiences of first aid.
Aim: To identify first and second year medical students’ knowledge of, and attitudes towards, first aid and their expectations of the medical curriculum.
Methods: A questionnaire was delivered using TurningPoint Audience Response System® during the second semester of the 2008 - 2009 academic year to all first and second year medical students at QUB.
Results: Less than half of the students felt that they had a good level of first aid knowledge, a third would feel confident helping in an emergency and only 10% would be confident leading an emergency situation. The vast majority of students believed first aid is beneficial, that the general public expect medical students to have the knowledge to handle an emergency situation, and that a full first aid course should be included in the core medical curriculum at an early stage. They did not believe it should be a pre-requisite for medical school.
Conclusion: Only a small proportion believed their first aid knowledge adequate. An overwhelming proportion believed that first aid training is beneficial and that the public expect competency in managing emergencies. This study clearly demonstrates students’ need and desire for first aid training in the core medical curriculum at an early stage and to the highest training level possible.
Resumo:
Medical device related infections are becoming an increasing prevalent area of infectious disease. They can be attributed to a multitude of factors from an increasing elderly population with reduced immunological status to increasing microbial resistance and evolution. Of greatest significance is the failure of standard antimicrobial regimens to eradicate biomaterial-related infections due to the formation of microbial biofilms consisting of extracellular polymeric substances. Biofilms form and thrive at the abiotic device surface where nutrients are more concentrated and symbiotic colonies can be formed. The formation of a biofilm matrix occurs in a series of steps beginning with reversible attachment of bacteria to the surface of the substrate and terminating in dispersion of mature biofilm microcolonies that aim to colonise fresh surfaces high in nutrients. Mature biofilms can resist 10-1000 times the concentrations of standard antibiotic regimens that are required to kill genetically equivalent planktonic forms. The extent of the infection and the pathogen(s) present can be attributed to both the form and location of the device. It is important that preventative measures and treatment strategies relate to combating the causative microorganisms. Preventative measures include: the use of anti-infective biomaterials that can be coated or incorporated with standard or innovative antimicrobials; modified anti-adhesive medical devices; environmental sterilisation protocols and prophylactic drug therapy. Treatment of established infection may require removal of the device or if deemed possible the device may be salvageable through the initiation of antimicrobial therapy. The increasing spectre of antibiotic resistance and medical device related infections are a large and increasing burden on health care systems and the patient’s quality of life and long term prognosis. As an infectious disease it represents one of the most difficult challenges facing modern science and healthcare.
Resumo:
False-positive PCR results usually occur as a consequence of specimen-to-specimen or amplicon-to-specimen contamination within the laboratory. Evidence of contamination at time of specimen collection linked to influenza vaccine administration in the same location as influenza sampling is described. Clinical, circumstantial and laboratory evidence was gathered for each of five cases of influenza-like illness (ILI) with unusual patterns of PCR reactivity for seasonal H1N1, H3N2, H1N1 (2009) and influenza B viruses. Two 2010 trivalent influenza vaccines and environmental swabs of a hospital influenza vaccination room were also tested for influenza RNA. Sequencing of influenza A matrix (M) gene amplicons from the five cases and vaccines was undertaken. Four 2009 general practitioner (GP) specimens were seasonal H1N1, H3N2 and influenza B PCR positive. One 2010 GP specimen was H1N1 (2009), H3N2 and influenza B positive. PCR of 2010 trivalent vaccines showed high loads of detectable influenza A and B RNA. Sequencing of the five specimens and vaccines showed greatest homology with the M gene sequence of Influenza A/Puerto Rico/8/1934 H1N1 virus (used in generation of influenza vaccine strains). Environmental swabs had detectable influenza A and B RNA. RNA detection studies demonstrated vaccine RNA still detectable for at least 66 days. Administration of influenza vaccines and clinical sampling in the same room resulted in the contamination with vaccine strains of surveillance swabs collected from patients with ILI. Vaccine contamination should therefore be considered, particularly where multiple influenza virus RNA PCR positive signals (e.g. H1N1, H3N2 and influenza B) are detected in the same specimen.