185 resultados para Increasing Velocity


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Newly qualified nurses have been educated and assessed as being proficient carrying out certain procedures ,one such insertion of nasogastric feeding tube. Link between theory and practice will be explored. Highlighting the value of low fidelity simulation and peer assessment to enhance skills and competencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis of ≃19 500 narrow (≲200 km s-1) CIV λλ1548.2,1550.8 absorbers in ≃34 000 Sloan Digital Sky Survey quasar spectra is presented. The statistics of the number of absorbers as a function of outflow velocity shows that in approximately two-thirds of outflows, with multiple C IV absorbers present, absorbers are line-locked at the 500 km s-1 velocity separation of the C IV absorber doublet; appearing as 'triplets' in the quasar spectra. Line-locking is an observational signature of radiative line-driving in outflowing material, where the successive shielding of 'clouds' of material in the outflow locks the clouds together in outflow velocity. Line-locked absorbers are seen in both broad absorption line (BAL) quasars and non-BAL quasars with comparable frequencies and with velocities out to at least 20 000 km s-1. There are no detectable differences in the absorber properties and the dust content of single C IV doublets and line-locked C IV doublets. The gas associated with both single and line-locked CIV absorption systems includes material with a wide range of ionization potential (14-138 eV). Both single and line-locked CIV absorber systems show strong systematic trends in their ionization as a function of outflow velocity, with ionization decreasing rapidly with increasing outflow velocity. Initial simulations, employing CLOUDY, demonstrate that a rich spectrum of line-locked signals at various velocities may be expected due to significant opacities from resonance lines of Li-, He- and H-like ions of O, C and N, along with contributions from He II and HI resonance lines. The simulations confirm that line-driving can be the dominant acceleration mechanism for clouds with N(H I) ≃ 1019 cm-2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The measurement and representation of the electrical activity of muscles [electromyography (EMG)] have a long history from the Victorian Era until today. Currently, EMG has uses both as a research tool, in noninvasively recording muscle activation, and clinically in the diagnosis and assessment of nerve and muscle disease and injury as well as in assessing the recovery of neuromuscular function after nerve damage. In the present report, we describe the use of a basic EMG setup in our teaching laboratories to demonstrate some of these current applications. Our practical also illustrates some fundamental physiological and structural properties of nerves and muscles. Learning activities include 1) displaying the recruitment of muscle fibers with increasing force development; 2) the measurement of conduction velocity of motor nerves; 3) the assessment of reflex delay and demonstration of Jendrassik's maneuver; and 4) a Hoffman reflex experiment that illustrates the composition of mixed nerves and the differential excitability thresholds of fibers within the same nerve, thus aiding an understanding of the reflex nature of muscle control. We can set up the classes at various levels of inquiry depending on the needs/professional requirements of the class. The results can then provide an ideal platform for a discovery learning session/tutorial on how the central nervous system controls muscles, giving insights on how supraspinal control interacts with reflexes to give smooth, precise muscular activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-velocity impact damage can drastically reduce the residual mechanical properties of the composite structure even when there is barely visible impact damage. The ability to computationally predict the extent of damage and compression after impact (CAI) strength of a composite structure can potentially lead to the exploration of a larger design space without incurring significant development time and cost penalties. A three-dimensional damage model, to predict both low-velocity impact damage and compression after impact CAI strength of composite laminates, has been developed and implemented as a user material subroutine in the commercial finite element package, ABAQUS/Explicit. The virtual tests were executed in two steps, one to capture the impact damage and the other to predict the CAI strength. The observed intra-laminar damage features, delamination damage area as well as residual strength are discussed. It is shown that the predicted results for impact damage and CAI strength correlated well with experimental testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whey protein has been indicated to curb diet-induced obesity, glucose intolerance and delay the onset of type 2 diabetes mellitus. Here the effects of intact crude whey, intact individual whey proteins and beta-lactoglobulin hydrolysates on an enteroendocrine (EE) cell model were examined. STC-1 pGIP/neo cells were incubated with several concentrations of yogurt whey (YW), cheese whey (CW), beta-lactoglobulin (BLG), alpha-lactalbumin (ALA) and bovine serum albumin (BSA). The findings demonstrate that BLG stimulates EE cell proliferation, and also GLP-1 secretion (an effect which is lost following hydrolysis with chymotrypsin or trypsin). ALA is a highly potent GLP-1 secretagogue which also increases the intracellular levels of GLP-1. Conversely, whey proteins and hydrolysates had little impact on GIP secretion. This appears to be the first investigation of the effects of the three major proteins of YW and CW on EE cells. The anti-diabetic potential of whey proteins should be further investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mixed flow turbines can offer improvements over typical radial turbines used in automotive turbochargers, with regards to transient performance and low velocity ratio efficiency. Turbine rotor mass dominates the rotating inertia of the turbocharger, and any reductions of mass in the outer radii of the wheel, including the rotor back-disk, can significantly reduce this inertia and improve the acceleration of the assembly. Off-design, low velocity ratio conditions are typified by highly tangential flow at the rotor inlet and a non-zero inlet blade angle is preferred for such operating conditions. This is achievable in a Mixed Flow Turbine without increasing bending stresses within the rotor blade, which is beneficial in high speed and high inlet temperature turbine design. A range of mixed flow turbine rotors was designed with varying cone angle and inlet blade angle and each was assessed at a number of operating points. These rotors were based on an existing radial flow turbine, and both the hub and shroud contours and exducer geometry were maintained. The inertia of each rotor was also considered. The results indicated that there was a trade-off between efficiency and inertia for the rotors and certain designs may be beneficial for the transient performance of downsized, turbocharged engines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To investigate whether myopia is becoming more common across Europe and explore whether increasing education levels, an important environmental risk factor for myopia, might explain any temporal trend.

DESIGN: Meta-analysis of population-based, cross-sectional studies from the European Eye Epidemiology (E(3)) Consortium.

PARTICIPANTS: The E(3) Consortium is a collaborative network of epidemiological studies of common eye diseases in adults across Europe. Refractive data were available for 61 946 participants from 15 population-based studies performed between 1990 and 2013; participants had a range of median ages from 44 to 78 years.

METHODS: Noncycloplegic refraction, year of birth, and highest educational level achieved were obtained for all participants. Myopia was defined as a mean spherical equivalent ≤-0.75 diopters. A random-effects meta-analysis of age-specific myopia prevalence was performed, with sequential analyses stratified by year of birth and highest level of educational attainment.

MAIN OUTCOME MEASURES: Variation in age-specific myopia prevalence for differing years of birth and educational level.

RESULTS: There was a significant cohort effect for increasing myopia prevalence across more recent birth decades; age-standardized myopia prevalence increased from 17.8% (95% confidence interval [CI], 17.6-18.1) to 23.5% (95% CI, 23.2-23.7) in those born between 1910 and 1939 compared with 1940 and 1979 (P = 0.03). Education was significantly associated with myopia; for those completing primary, secondary, and higher education, the age-standardized prevalences were 25.4% (CI, 25.0-25.8), 29.1% (CI, 28.8-29.5), and 36.6% (CI, 36.1-37.2), respectively. Although more recent birth cohorts were more educated, this did not fully explain the cohort effect. Compared with the reference risk of participants born in the 1920s with only primary education, higher education or being born in the 1960s doubled the myopia prevalence ratio-2.43 (CI, 1.26-4.17) and 2.62 (CI, 1.31-5.00), respectively-whereas individuals born in the 1960s and completing higher education had approximately 4 times the reference risk: a prevalence ratio of 3.76 (CI, 2.21-6.57).

CONCLUSIONS: Myopia is becoming more common in Europe; although education levels have increased and are associated with myopia, higher education seems to be an additive rather than explanatory factor. Increasing levels of myopia carry significant clinical and economic implications, with more people at risk of the sight-threatening complications associated with high myopia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-velocity impact damage can drastically reduce the residual strength of a composite structure even when the damage is barely visible. The ability to computationally predict the extent of damage and compression-after-impact (CAI) strength of a composite structure can potentially lead to the exploration of a larger design space without incurring significant time and cost penalties. A high-fidelity three-dimensional composite damage model, to predict both low-velocity impact damage and CAI strength of composite laminates, has been developed and implemented as a user material subroutine in the commercial finite element package, ABAQUS/Explicit. The intralaminar damage model component accounts for physically-based tensile and compressive failure mechanisms, of the fibres and matrix, when subjected to a three-dimensional stress state. Cohesive behaviour was employed to model the interlaminar failure between plies with a bi-linear traction–separation law for capturing damage onset and subsequent damage evolution. The virtual tests, set up in ABAQUS/Explicit, were executed in three steps, one to capture the impact damage, the second to stabilize the specimen by imposing new boundary conditions required for compression testing, and the third to predict the CAI strength. The observed intralaminar damage features, delamination damage area as well as residual strength are discussed. It is shown that the predicted results for impact damage and CAI strength correlated well with experimental testing without the need of model calibration which is often required with other damage models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-velocity impact damage can drastically reduce the residual mechanical properties of the composite structure even when there is barely visible impact damage. The ability to computationally predict the extent of damage and compression after impact (CAI) strength of a composite structure can potentially lead to the exploration of a larger design space without incurring significant development time and cost penalties. A three-dimensional damage model, to predict both low-velocity impact damage and compression after impact CAI strength of composite laminates, has been developed and implemented as a user material subroutine in the commercial finite element package, ABAQUS/Explicit. The virtual tests were executed in two steps, one to capture the impact damage and the other to predict the CAI strength. The observed intra-laminar damage features, delamination damage area as well as residual strength are discussed. It is shown that the predicted results for impact damage and CAI strength correlated well with experimental testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract. Mixed flow turbines can offer improvements over typical radial turbines used in automotive turbochargers, with respect to transient performance and low velocity ratio efficiency. Turbine rotor mass dominates the rotating inertia of the turbocharger’s rotating assembly, and any reductions of mass in the outer radii of the wheel, including the rotor back-disk, can significantly reduce this inertia and improve the acceleration of the assembly. Off-design, low velocity ratio conditions are typified by highly tangential flow at the rotor inlet and a non-zero inlet blade angle is desirable for such operating conditions. This is achievable in a Mixed Flow Turbine without increasing bending stresses within the rotor blade, which is beneficial in high speed and high inlet temperature turbine designs.
This study considers the meridional geometry of Mixed Flow Turbines using a multi-disciplinary study to assess both the structural and aerodynamic performance of each rotor, incorporating both CFD and FEA. Variations of rotor trailing edge were investigated at different operating conditions representing both on- and off-design operation within the constraints of existing hardware geometries. In all cases, the performance is benchmarked against an existing state-of-the-art radial turbocharger turbine with consideration of rotor inertia and its benefit for engine transient performance. The results indicate the influence of these parameters and this report details their benefits with respect to turbocharging a downsized, automotive engine.