179 resultados para Cutting parameters
Resumo:
Hidden Markov models (HMMs) are widely used models for sequential data. As with other probabilistic graphical models, they require the specification of precise probability values, which can be too restrictive for some domains, especially when data are scarce or costly to acquire. We present a generalized version of HMMs, whose quantification can be done by sets of, instead of single, probability distributions. Our models have the ability to suspend judgment when there is not enough statistical evidence, and can serve as a sensitivity analysis tool for standard non-stationary HMMs. Efficient inference algorithms are developed to address standard HMM usage such as the computation of likelihoods and most probable explanations. Experiments with real data show that the use of imprecise probabilities leads to more reliable inferences without compromising efficiency.
Resumo:
We present the study of absolute magnitude (H) and slope parameter (G) of 170,000 asteroids observed by the Pan-STARRS1 telescope during the period of 15 months within its 3-year all-sky survey mission. The exquisite photometry with photometric errors below 0.04 mag and well-defined filter and photometric system allowed to derive H and G with statistical and systematic errors. Our new approach lies in the Monte Carlo technique simulating rotation periods, amplitudes, and colors, and deriving most-likely H, G and their systematic errors. Comparison of H_M by Muinonen's phase function (Muinonen et al., 2010) with the Minor Planet Center database revealed a negative offset of 0.22±0.29 meaning that Pan-STARRS1 asteroids are fainter. We showed that the absolute magnitude derived by Muinonen's function is systematically larger on average by 0.14±0.29 and by 0.30±0.16 when assuming fixed slope parameter (G=0.15, G_{12}=0.53) than Bowell's absolute magnitude (Bowell et al., 1989). We also derived slope parameters of asteroids of known spectral types and showed a good agreement with the previous studies within the derived uncertainties. However, our systematic errors on G and G_{12} are significantly larger than in previous work, which is caused by poor temporal and phase coverage of vast majority of the detected asteroids. This disadvantage will vanish when full survey data will be available and ongoing extended and enhanced mission will provide new data.
Resumo:
Background: Pedigree reconstruction using genetic analysis provides a useful means to estimate fundamental population biology parameters relating to population demography, trait heritability and individual fitness when combined with other sources of data. However, there remain limitations to pedigree reconstruction in wild populations, particularly in systems where parent-offspring relationships cannot be directly observed, there is incomplete sampling of individuals, or molecular parentage inference relies on low quality DNA from archived material. While much can still be inferred from incomplete or sparse pedigrees, it is crucial to evaluate the quality and power of available genetic information a priori to testing specific biological hypotheses. Here, we used microsatellite markers to reconstruct a multi-generation pedigree of wild Atlantic salmon (Salmo salar L.) using archived scale samples collected with a total trapping system within a river over a 10 year period. Using a simulation-based approach, we determined the optimal microsatellite marker number for accurate parentage assignment, and evaluated the power of the resulting partial pedigree to investigate important evolutionary and quantitative genetic characteristics of salmon in the system.
Results: We show that at least 20 microsatellites (ave. 12 alleles/locus) are required to maximise parentage assignment and to improve the power to estimate reproductive success and heritability in this study system. We also show that 1.5 fold differences can be detected between groups simulated to have differing reproductive success, and that it is possible to detect moderate heritability values for continuous traits (h(2) similar to 0.40) with more than 80% power when using 28 moderately to highly polymorphic markers.
Conclusion: The methodologies and work flow described provide a robust approach for evaluating archived samples for pedigree-based research, even where only a proportion of the total population is sampled. The results demonstrate the feasibility of pedigree-based studies to address challenging ecological and evolutionary questions in free-living populations, where genealogies can be traced only using molecular tools, and that significant increases in pedigree assignment power can be achieved by using higher numbers of markers.
Resumo:
Using molecular dynamics (MD) simulation, this paper investigates anisotropic cutting behaviour of single crystal silicon in vacuum under a wide range of substrate temperatures (300 K, 500 K, 750 K, 850 K, 1173 K and 1500 K). Specific cutting energy, force ratio, stress in the cutting zone and cutting temperature were the indicators used to quantify the differences in the cutting behaviour of silicon. A key observation was that the specific cutting energy required to cut the (111) surface of silicon and the von Mises stress to yield the silicon reduces by 25% and 32%, respectively, at 1173 K compared to what is required at 300 K. The room temperature cutting anisotropy in the von Mises stress and the room temperature cutting anisotropy in the specific cutting energy (work done by the tool in removing unit volume of material) were obtained as 12% and 16% respectively. It was observed that this changes to 20% and 40%, respectively, when cutting was performed at 1500 K, signifying a very strong correlation between the anisotropy observed during cutting and the machining temperature. Furthermore, using the atomic strain criterion, the width of primary shear zone was found to vary with the orientation of workpiece surface and temperature i.e. it remains narrower while cutting the (111) surface of silicon or at higher machining temperatures. A major anecdote of the study based on the potential function employed in the study is that, irrespective of the cutting plane or the cutting temperature, the state of the cutting edge of the diamond tool did not show direct diamond to graphitic phase transformation.
Resumo:
We present the results of a Monte Carlo technique to calculate the absolute magnitudes (H) and slope parameters (G) of about 240,000 asteroids observed by the Pan-STARRS1 telescope during the first 15 months of its 3-year all-sky survey mission. The system's exquisite photometry with photometric errors asteroids rotation period, amplitude and color to derive the most-likely H and G, but its major advantage is in estimating realistic statistical+systematic uncertainties and errors on each parameter. The method was confirmed by comparison with the well-established and accurate results for about 500 asteroids provided by Pravec et al. (2012) and then applied to determining H and G for the Pan-STARRS1 asteroids using both the Muinonen et al. (2010) and Bowell et al. (1989) phase functions. Our results confirm the bias in MPC photometry discovered by ( Jurić et al., 2002).
Resumo:
Features of chip formation can inform the mechanism of a machining process. In this paper, a series of orthogonal cutting experiments were carried out on unidirectional carbon fiber reinforced polymer (UD-CFRP) under cutting speed of 0.5 m/min. The specially designed orthogonal cutting tools and high-speed camera were used in this paper. Two main factors are found to influence the chip morphology, namely the depth of cut (DOC) and the fiber orientation (angle 휃), and the latter of which plays a more dominant role. Based on the investigation of chip formation, a new approach is proposed for predicting fracture toughness of the newly machined surface and the total energy consumption during CFRP orthogonal cutting is introduced as a function of the surface energy of machined surface, the energy consumed to overcome friction, and the energy for chip fracture. The results show that the proportion of energy spent on tool-chip friction is the greatest, and the proportions of energy spent on creating new surface decrease with the increasing of fiber angle.
Resumo:
Clean and renewable energy generation and supply has drawn much attention worldwide in recent years, the proton exchange membrane (PEM) fuel cells and solar cells are among the most popular technologies. Accurately modeling the PEM fuel cells as well as solar cells is critical in their applications, and this involves the identification and optimization of model parameters. This is however challenging due to the highly nonlinear and complex nature of the models. In particular for PEM fuel cells, the model has to be optimized under different operation conditions, thus making the solution space extremely complex. In this paper, an improved and simplified teaching-learning based optimization algorithm (STLBO) is proposed to identify and optimize parameters for these two types of cell models. This is achieved by introducing an elite strategy to improve the quality of population and a local search is employed to further enhance the performance of the global best solution. To improve the diversity of the local search a chaotic map is also introduced. Compared with the basic TLBO, the structure of the proposed algorithm is much simplified and the searching ability is significantly enhanced. The performance of the proposed STLBO is firstly tested and verified on two low dimension decomposable problems and twelve large scale benchmark functions, then on the parameter identification of PEM fuel cell as well as solar cell models. Intensive experimental simulations show that the proposed STLBO exhibits excellent performance in terms of the accuracy and speed, in comparison with those reported in the literature.
Resumo:
The aim of this article was to construct a T–ϕ phase diagram for a model drug (FD) and amorphous polymer (Eudragit® EPO) and to use this information to understand the impact of how temperature–composition coordinates influenced the final properties of the extrudate. Defining process boundaries and understanding drug solubility in polymeric carriers is of utmost importance and will help in the successful manufacture of new delivery platforms for BCS class II drugs. Physically mixed felodipine (FD)–Eudragit® EPO (EPO) binary mixtures with pre-determined weight fractions were analysed using DSC to measure the endset of melting and glass transition temperature. Extrudates of 10 wt% FD–EPO were processed using temperatures (110°C, 126°C, 140°C and 150°C) selected from the temperature–composition (T–ϕ) phase diagrams and processing screw speed of 20, 100 and 200rpm. Extrudates were characterised using powder X-ray diffraction (PXRD), optical, polarised light and Raman microscopy. To ensure formation of a binary amorphous drug dispersion (ADD) at a specific composition, HME processing temperatures should at least be equal to, or exceed, the corresponding temperature value on the liquid–solid curve in a F–H T–ϕ phase diagram. If extruded between the spinodal and liquid–solid curve, the lack of thermodynamic forces to attain complete drug amorphisation may be compensated for through the use of an increased screw speed. Constructing F–H T–ϕ phase diagrams are valuable not only in the understanding drug–polymer miscibility behaviour but also in rationalising the selection of important processing parameters for HME to ensure miscibility of drug and polymer.