294 resultados para Corticosterone Levels
Resumo:
Carrots and parsnips are often consumed as minimally processed ready-to-eat convenient foods and contain in minor quantities, bioactive aliphatic C17-polyacetylenes (falcarinol, falcarindiol, falcarindiol-3-acetate). Their retention during minimal processing in an industrial trial was evaluated. Carrot and parsnips were prepared in four different forms (disc cutting, baton cutting, cubing and shredding) and samples were taken in every point of their processing line. The unit operations were: peeling, cutting and washing with chlorinated water and also retention during 7 days storage was evaluated. The results showed that the initial unit operations (mainly peeling) influence the polyacetylene retention. This was attributed to the high polyacetylene content of their peels. In most cases, when washing was performed after cutting, less retention was observed possibly due to leakage during tissue damage occurred in the cutting step. The relatively high retention during storage indicates high plant matrix stability. Comparing the behaviour of polyacetylenes in the two vegetables during storage, the results showed that they were slightly more retained in parsnips than in carrots. Unit operations and especially abrasive peeling might need further optimisation to make them gentler and minimise bioactive losses.
Resumo:
We report calculations for energy levels, radiative rates and electron impact excitation rates for transitions in He-like Li II, Be III, B IV and C V. grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates. For determining the collision strengths and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of each ion. Collision strengths have been averaged over a Maxwellian velocity distribution and the effective collision strengths so obtained are reported over a wide temperature range up to 10(6) K. Comparisons have been made with similar data obtained from the flexible atomic code (FAC) to highlight the importance of resonances, included in calculations from darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, particularly for weak transitions and at low energies, have also been discussed. Additionally, lifetimes are also listed for all calculated levels of the above four ions.
Resumo:
In this paper, we report calculations of energy levels, radiative rates and electron impact excitation rates for transitions in Li-like Si XII, He-like Si XIII and H-like Si XIV. The grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates, while for determining the collision strengths and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 24 levels of Si XII, 49 levels of Si XIII and 25 levels of Si XIV, belonging to the n≤5 configurations. Collision strengths have been averaged over a Maxwellian electron velocity distribution and the effective collision strengths so obtained are reported over a wide temperature range below 107 K. Comparisons have been made with similar data obtained from the flexible atomic code (fac) to highlight the importance of resonances, included in calculations from darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, particularly for weak transitions and at low energies, are also discussed. Additionally, lifetimes are listed for all calculated levels of the above three ions, although no measurements are available with which to compare.
Resumo:
The Coulomb–Born approximation is used to calculate electron-impact excitation collision strengths and effective collision strengths for optically allowed transitions among degenerate fine-structure levels of hydrogenic ions with 2⩽Z⩽30 and n⩽5. Collision strengths are calculated over a wide range of energies up to View the MathML source. Effective collision strengths are obtained over a wide temperature range up to View the MathML source by integrating the collision strengths over a Maxwellian distribution of electron velocities.
Resumo:
We report calculations of energy levels, radiative rates and electron impact excitation rates for transitions in H-like N VII, O VIII, F IX, Ne X and Na XI. The general-purpose relativistic atomic structure package (grasp) is adopted for calculating energy levels and radiative rates, while the Dirac atomic R-matrix code (DARC) and the flexible atomic code (FAC) are used for determining the collision strengths and subsequently the excitation rates. Oscillator strengths, radiative rates and line strengths are listed for all E1, E2, M1 and M2 transitions among the lowest 25 levels of the above five ions. Collision strengths have been averaged over a Maxwellian velocity distribution, and the effective collision strengths so obtained are reported over a wide temperature range below 10(7) K. Additionally, lifetimes are also given for all the calculated energy levels of the above five ions.
Resumo:
In this paper, we report calculations of energy levels, radiative rates and electron impact excitation rates for transitions in Li-like N V, F VII, Ne VIII and Na IX. The general-purpose relativistic atomic structure package (GRASP) is adopted for calculating energy levels and radiative rates, while for determining the collision strengths and subsequently the excitation rates, the Dirac atomic R-matrix code (DARC) and the flexible atomic code (FAC) are used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 24 levels of N V, F VII, Ne VIII and Na IX. Collision strengths have been averaged over a Maxwellian velocity distribution and the effective collision strengths so obtained are reported over a wide temperature range below 10(6.6) K. Additionally, lifetimes are also reported for all calculated levels of the above four ions.
Resumo:
Energy levels, radiative rates, oscillator strengths, line strengths, and lifetimes have been calculated for transitions in B-like to F-like Xe ions, Xe L–XLVI. For the calculations, a fully relativistic grasp code has been adopted, and results are reported for all electric dipole, electric quadrupole, magnetic dipole, and magnetic quadrupole transitions among the lowest 125, 236, 272, 226, and 113 levels of Xe L, Xe XLIX, Xe XLVIII, Xe XLVII, and Xe XLVI, respectively, belonging to the n ⩽ 3 configurations.
Resumo:
We report calculations of energy levels, radiative rates and electron impact excitation cross
sections and rates for transitions in He-like Cl XVI, K XVIII, Ca XIX and Sc XX. The grasp
(general-purpose relativistic atomic structure package) is adopted for calculating energy levels
and radiative rates. To determine the collision strengths and subsequently the excitation rates,
the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line
strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of
each ion. Collision strengths are averaged over a Maxwellian velocity distribution and the
effective collision strengths obtained listed over a wide temperature range up to 107.4 K.
Comparisons are made with similar data obtained from the flexible atomic code (fac) to
highlight the importance of resonances, included in calculations with darc, in the
determination of effective collision strengths. Discrepancies between the collision strengths
from darc and fac, particularly for forbidden transitions, are also discussed. Additionally,
theoretical lifetimes are listed for all the 49 levels of the above four ions.