155 resultados para Close-Stars


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. Close-in, giant planets are expected to influence their host stars via tidal or magnetic interaction. But are these effects in X-rays strong enough in suitable targets known so far to be observed with today's instrumentation? Aims: The υ And system, an F8V star with a Hot Jupiter, was observed to undergo cyclic changes in chromospheric activity indicators with its innermost planet's period. We aim to investigate the stellar chromospheric and coronal activity over several months. Methods: We therefore monitored the star in X-rays as well as at optical wavelengths to test coronal and chromospheric activity indicators for planet-induced variability, making use of the Chandra X-ray Observatory as well as the echelle spectrographs FOCES and HRS at Calar Alto (Spain) and the Hobby-Eberly Telescope (Texas, US). Results: The stellar activity level is low, as seen both in X-rays as in Ca ii line fluxes; the chromospheric data show variability with the stellar rotation period. We do not find activity variations in X-rays or in the optical that can be traced back to the planet. Conclusions: Gaining observational evidence of star-planet interactions in X-rays remains challenging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the lack of a shear-rich tachocline region, low-mass fully convective (FC) stars are capable of generating strong magnetic fields, indicating that a dynamo mechanism fundamentally different from the solar dynamo is at work in these objects. We present a self-consistent three-dimensional model of magnetic field generation in low-mass FC stars. The model utilizes the anelastic magnetohydrodynamic equations to simulate compressible convection in a rotating sphere. A distributed dynamo working in the model spontaneously produces a dipole-dominated surface magnetic field of the observed strength. The interaction of this field with the turbulent convection in outer layers shreds it, producing small-scale fields that carry most of the magnetic flux. The Zeeman–Doppler-Imaging technique applied to synthetic spectropolarimetric data based on our model recovers most of the large-scale field. Our model simultaneously reproduces the morphology and magnitude of the large-scale field as well as the magnitude of the small-scale field observed on low-mass FC stars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-mass stars are highly interesting targets: we are able to detect planets in their habitable zones, and upcoming searches for biomarkers in exoplanet atmospheres will focus on low-mass star systems due to their ubiquity and proximity. We aim to develop an age-activity calibration for old low-mass stars, using wide binary systems consisting of an M or K dwarf and a white dwarf. The age of the system is determined by the WD cooling time plus its progenitor lifetime, yielding reliable ages in the regime >1 Gyr. For an exploratory sample of 7 systems where we have already derived ages, we propose to perform Chandra ACIS-S observations to determine the X-ray luminosities of the M dwarfs and correlate their stellar activity with age. We ask for a total observing time of 110 ks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evaporation of exoplanetary atmospheres is thought to be driven by high-energy irradiation. However, the actual mass loss rates are not well constrained. Co-I Kipping has recently discovered that the star KOI-314, an M1V dwarf at 65 pc distance, is orbited by two earth-sized planets, the inner one of them rocky and the outer one gaseous (P_orb = 14d and 23d). Other recent works have shown an abundance of small rocky planets in very close orbits around their host stars, suggesting that the stellar high-energy irradiation evaporates away gaseous envelopes. KOI-314 is the first nearby system in which earth-sized planets of both types are detected, allowing us to constrain the efficiency of planetary evaporation if the stellar X-ray irradiation is measured. We therefore propose a 10 ks Chandra ACIS-S pointing to determine the stellar X-ray luminosity and hardness ratio. The accuracy of the orbital solution decreases quickly due to Transit-Timing Variations, which is why we ask for DDT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review the development of the time-dependent close-coupling method to study atomic and molecular few body dynamics. Applications include electron and photon collisions with atoms, molecules, and their ions.