285 resultados para Chemotherapy


Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE:
The aim of the study was to compare the pre-operative metabolic tumour length on FDG PET/CT with the resected pathological specimen in patients with oesophageal cancer.

METHODS:
All patients diagnosed with oesophageal carcinoma who had undergone staging PET/CT imaging between the period of June 2002 and May 2008 who were then suitable for curative surgery, either with or without neo-adjuvant chemotherapy, were included in this study. Metabolic tumour length was assessed using both visual analysis and a maximum standardised uptake value (SUV(max)) cutoff of 2.5.

RESULTS:
Thirty-nine patients proceeded directly to curative surgical resection, whereas 48 patients received neo-adjuvant chemotherapy, followed by curative surgery. The 95% limits of agreement in the surgical arm were more accurate when the metabolic tumour length was visually assessed with a mean difference of -0.05 cm (SD 2.16 cm) compared to a mean difference of +2.42 cm (SD 3.46 cm) when assessed with an SUV(max) cutoff of 2.5. In the neo-adjuvant group, the 95% limits of agreement were once again more accurate when assessed visually with a mean difference of -0.6 cm (SD 1.84 cm) compared to a mean difference of +1.58 cm (SD 3.1 cm) when assessed with an SUV(max) cutoff of 2.5.

CONCLUSION:
This study confirms the high accuracy of PET/CT in measuring gross target volume (GTV) length. A visual method for GTV length measurement was demonstrated to be superior and more accurate than when using an SUV(max) cutoff of 2.5. This has the potential of reducing the planning target volume with dose escalation to the tumour with a corresponding reduction in normal tissue complication probability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ligand-induced activation of peroxisome proliferator-activated receptor gamma (PPAIR gamma) inhibits proliferation in cancer cells in vitro and in vivo; however, the downstream targets remain undefined. We report the identification of a peroxisome proliferator response element in the promoter region of the Na+/ H transporter gene NHE1, the overexpression of which has been associated with carcinogenesis. Exposure of breast cancer cells expressing high levels of PPAR gamma to its natural and synthetic agonists resulted in downregulation of NHE1 transcription as well as protein expression. Furthermore, the inhibitory effect of activated PPAR gamma on tumor colony-forming ability was abrogated on overexpression of NHE1, whereas small interfering RNA-mediated gene silencing of NHE1 significantly increased the sensitivity of cancer cells to growth-inhibitory stimuli. Finally, histopathologic analysis of breast cancer biopsies obtained from patients with type II diabetes treated with the synthetic agonist rosiglitazone showed significant repression of NHE1 in the tumor tissue. These data provide evidence for tumor-selective downregulation of NHE1 by activated PPAR gamma in vitro and in pathologic specimens from breast cancer patients and could have potential implications for the judicious use of low doses of PPAR gamma ligands in combination chemotherapy regimens for an effective therapeutic response. [Cancer Res 2009;69(22):8636-44]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osteosarcomas are the most prevalent primary bone tumors found in pediatric patients. To understand their molecular etiology, cell culture models are used to define disease mechanisms under controlled conditions. Many osteosarcoma cell lines (e.g., SAOS-2, U2OS, MG63) are derived from Caucasian patients. However, patients exhibit individual and ethnic differences in their responsiveness to irradiation and chemotherapy. This motivated the establishment of osteosarcoma cell lines (OS1, OS2, OS3) from three ethnically Chinese patients. OS1 cells, derived from a pre-chemotherapeutic tumor in the femur of a 6-year-old female, were examined for molecular markers characteristic for osteoblasts, stem cells, and cell cycle control by immunohistochemistry, reverse transcriptase-PCR, Western blotting and flow cytometry. OS I have aberrant G-banded karyotypes, possibly reflecting chromosomal abnormalities related to p53 deficiency. OS I had ossification profiles similar to human fetal osteoblasts rather than SAOS-2 which ossifies ab initio, (P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background/Aims: Hepatocellular carcinoma is a leading cause of global cancer mortality, with standard chemotherapy being minimally effective in prolonging survival. We investigated if combined targeting of vascular endothelial growth factor protein and expression might affect hepatocellular carcinoma growth and angiogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resistance to cisplatin chemotherapy remains a major hurdle preventing effective treatment of many solid cancers. BAX and BAK are pivotal regulators of the mitochondrial apoptosis pathway, however little is known regarding their regulation in cisplatin resistant cells. Cisplatin induces DNA damage in both sensitive and resistant cells, however the latter exhibits a failure to initiate N-terminal exposure of mitochondrial BAK or mitochondrial SMAC release. Both phenotypes are highly sensitive to mitochondrial permeabilisation induced by exogenous BH3 domain peptides derived from BID, BIM, NOXA (which targets MCL-1 and A1), and there is no significant change in their prosurvival BCL2 protein expression profiles. Obatoclax, a small molecule inhibitor of pro-survival BCL-2 family proteins including MCL-1, decreases cell viability irrespective of platinum resistance status across a panel of cell lines selected for oxaliplatin resistance. In summary, selection for platinum resistance is associated with a block of mitochondrial death signalling upstream of BAX/BAK activation. Conservation of sensitivity to BH3 domain induced apoptosis can be exploited by agents such as obatoclax, which directly target the mitochondria and BCL-2 family.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The treatment of advanced non-small cell lung cancer (NSCLC) has evolved substantially during the last years. Chemotherapy remains the cornerstone of treatment and prolongs survival with a positive impact on quality of life. However, we seem to have reached a plateau of activity in the treatment of NSCLC. Recently, the addition of bevacizumab or cetuximab to chemotherapy doublets has improved the outcome in selected patients with advanced NSCLC. Furthermore, the use of erlotinib and gefitinib is an alternative for second line treatment. Advances in our understanding of molecular biology of cancer and mechanisms of tumourigenesis have further enabled the discovery of several potential molecular targets and development of novel 'targeted therapies'. The purpose of this study is to review current data on the role of targeted therapies in the treatment of advanced NSCLC. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Malignant pleural mesothelioma (MPM) is an uncommon disease whose incidence is increasing worldwide over the past 30 years. Surgical resection and radiotherapy represent the standard treatment in patient with resectable MPM. Chemotherapy is also necessary to reduce incidence of distant metastases, but the optimal setting of treatment (neoadjuvant, adjuvant and intrapleural) is not clarified. For the patients with unresectable MPM, the combination cisplatin and pemetrexed or ralitrexed is the standard treatment as supported by a Phase III study. Better understanding of molecular pathways involved in MPM has enabled inclusion of new drugs targeted against pathways responsible for proliferation, cell survival and angiogenesis. Objective: This review discusses the current treatment option, the specific signal pathways activated in MPM and the novel agents under evaluation in clinical trials. Methods: We use for this article abstracts, papers, oral presentations from ASCO and the website http://www.clinical-trials.gov. Results/conclusion: This review summarizes the activity of chemotherapy and of new agents under evaluation in clinical trials. The better understanding of molecular pathways activated in MPM will hopefully provide new therapeutic options for these patients in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We found that procaspase 8 was overexpressed in non-small-cell lung cancers (NSCLCs) compared with matched normal tissues. The caspase 8 inhibitor FLICE-inhibitory protein (FLIP) was also overexpressed in the majority of NSCLCs. Silencing FLIP induced caspase 8 activation and apoptosis in NSCLC cell lines, but not in normal lung cell lines. Apoptosis induced by FLIP silencing was mediated by the TRAIL death receptors DR4 and DR5, but was not dependent on ligation of the receptors by TRAIL. Furthermore, the apoptosis induced by FLIP silencing was dependent on the overexpression of procaspase 8 in NSCLC cells. Moreover, in NSCLC cells, but not in normal cells, FLIP silencing induced co-localization of DR5 and ceramide, and disruption of this co-localization abrogated apoptosis. FLIP silencing supra-additively increased TRAIL-induced apoptosis of NSCLC cells; however, normal lung cells were resistant to TRAIL, even when FLIP was silenced. Importantly, FLIP silencing sensitized NSCLC cells but not normal cells to chemotherapy in vitro, and silencing FLIP in vivo retarded NSCLC xenograft growth and enhanced the anti-tumour effects of cisplatin. Collectively, our results suggest that due to frequent procaspase 8 overexpression, NSCLCs may be particularly sensitive to FLIP-targeted therapies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: We previously found that cellular FLICE-inhibitory protein (c-FLIP), caspase 8, and tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) receptor 2 (DR5) are major regulators of cell viability and chemotherapy-induced apoptosis in colorectal cancer. In this study, we determined the prognostic significance of c-FLIP, caspase 8, TRAIL and DR5 expression in tissues from patients with stage II and III colorectal cancer.

Experimental Design: Tissue microarrays were constructed from matched normal and tumor tissue derived from patients (n = 253) enrolled in a phase III trial of adjuvant 5-fluorouracil–based chemotherapy versus postoperative observation alone. TRAIL, DR5, caspase 8, and c-FLIP expression levels were determined by immunohistochemistry.

Results: Colorectal tumors displayed significantly higher expression levels of c-FLIP (P < 0.001), caspase 8 (P = 0.01), and DR5 (P < 0.001), but lower levels of TRAIL (P < 0.001) compared with matched normal tissue. In univariate analysis, higher TRAIL expression in the tumor was associated with worse overall survival (P = 0.026), with a trend to decreased relapse-free survival (RFS; P = 0.06), and higher tumor c-FLIP expression was associated with a significantly decreased RFS (P = 0.015). Using multivariate predictive modeling for RFS in all patients and including all biomarkers, age, treatment, and stage, we found that the model was significant when the mean tumor c-FLIP expression score and disease stage were included (P < 0.001). As regards overall survival, the overall model was predictive when both TRAIL expression and disease stage were included (P < 0.001).

Conclusions: High c-FLIP and TRAIL expression may be independent adverse prognostic markers in stage II and III colorectal cancer and might identify patients most at risk of relapse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study demonstrated key resistance genes to fluroquinilones in Streptococcci isolated from sputum of people with CF. This suggests that other bacteria which are sometimes considered commensal may be a resovoir for resistance. Jse designed the study with Moore.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas elastase (LasB), a metalloprotease virulence factor, is known to play a pivotal role in pseudomonal infection. LasB is secreted at the site of infection, where it exerts a proteolytic action that spans from broad tissue destruction to subtle action on components of the host immune system. The former enhances invasiveness by liberating nutrients for continued growth, while the latter exerts an immunomodulatory effect, manipulating the normal immune response. In addition to the extracellular effects of secreted LasB, it also acts within the bacterial cell to trigger the intracellular pathway that initiates growth as a bacterial bio?lm. The key role of LasB in pseudomonal virulence makes it a potential target for the development of an inhibitor as an antimicrobial agent. The concept of inhibition of virulence is a recently established antimicrobial strategy, and such agents have been termed “second-generation” antibiotics. This approach holds promise in that it seeks to attenuate virulence processes without bactericidal action and, hence, without selection pressure for the emergence of resistant strains. A potent inhibitor of LasB,N-mercaptoacetyl-Phe-Tyr-amide (Ki 41 nM) has been developed, and its ability to block these virulence processes has been assessed. It has been demonstrated that thes compound can completely block the action of LasB on protein targets that are instrumental in bio?lm formation and immunomodulation. The novel LasB inhibitor has also been employed in bacterial-cell-based assays, to reduce the growth of pseudomonal bio?lms, and to eradicate bio?lm completely when used in combination with conventional antibiotics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence is accumulating that breast cancer is not one disease but many separate diseases. DNA microarray-based gene expression profiling has demonstrated subtypes with distinct phenotypic features and clinical responses. Prominent among the new subtypes is 'basal-like' breast cancer, one of the 'intrinsic' subtypes defined by negativity for the estrogen, progesterone, and HER2/neu receptors and positivity for cytokeratins-5/6. Focusing on basal-like breast cancer, we discuss how molecular technologies provide new chemotherapy targets, optimising treatment whilst sparing patients from un-necessary toxicity. Clinical trials are needed that incorporate long-term follow-up of patients with well-characterised tumour markers. Whilst the absence of an obvious dominant oncogene driving basallike breast cancer and the lack of specific therapeutic agents are serious stumbling blocks, this review will highlight several promising therapeutic candidates currently under evaluation. Thus, new molecular technologies should provide a fundamental foundation for better understanding breast and other cancers which may be exploited to save lives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are currently only two predictive markers of response to chemotherapy for breast cancer in routine clinical use, namely the Estrogen receptor-alpha and the HER2 receptor. The breast and ovarian cancer susceptibility gene BRCA1 is an important genetic factor in hereditary breast and ovarian cancer and there is increasing evidence of an important role for BRCA1 in the sporadic forms of both cancer types. Our group and numerous others have shown in both preclinical and clinical studies that BRCA1 is an important determinant of chemotherapy responses in breast cancer. In this review we will outline the current understanding of the role of BRCA1 as a determinant of response to DNA damaging and microtubule damaging chemotherapy. We will then discuss how the known functions of this multifaceted protein may provide mechanistic explanations for its role in chemotherapy responses. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Ten to twenty per cent of breast tumours exhibit a basallike genetic profile and these tumours carry a poor prognosis. Breast tumours which contain germline mutations for BRCA1 commonly exhibit a molecular profile similar to basal breast tumours. BRCA1 is a tumour suppressor gene which is mutated in up to 5–10% of breast cancer cases and is involved in multiple cellular processes including DNA damage control, cell cycle checkpoint control, apoptosis, ubiquitination and transcriptional regulation.

Methods Microarray-based profiling was carried out using the HCC1937EV and HCC1937BR breast cancer cell lines. Basal gene and protein expression levels were analysed by qRT-PCR and western blotting. ChIP analyses were performed and demonstrated that BRCA1 regulates basal gene expression through a transcriptional mechanism involving c-myc.

Results We have previously carried out microarray-based expression profiling to examine differences in gene expression when BRCA1 is reconstituted in BRCA1 mutated HCC1937 breast cancer cells. We observed that p-cadherin and the cytokeratin 5 and cytokeratin 17 genes, which are strongly correlated with the basal phenotype, are differentially expressed when BRCA1 is reconstituted. In addition, qRT-PCR and ChIP analysis of BRCA1 reconstituted cells show that BRCA1 represses the expression of these basal genes by a transcriptional mechanism. Furthermore, abrogation of endogenous BRCA1 protein in the T47D cell line using siRNA results in reexpression of these basal genes, suggesting that BRCA1 expression levels may be important in basal gene expression. We have also demonstrated that BRCA1 is physically associated with the promoter regions of basal genes through an association with c-myc. Consequently, we have confirmed that siRNA inhibition of c-myc in T47D cells results in re-expression of these genes.

Conclusions Our results suggest that BRCA1 is involved in the transcriptional regulation of genes associated with the basal phenotype and that BRCA1 controls basal gene expression through a transcriptional mechanism involving c-myc. Further work is now concentrating on defining the relationship between BRCA1 and basal gene expression and how this may affect clinical responses to breast cancer chemotherapy.