152 resultados para Cancer Cells


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The importance of ion channels in the hallmarks of many cancers is increasingly recognised. This article reviews current knowledge of the expression of members of the voltage-gated calcium channel family (CaV) in cancer at the gene and protein level and discusses their potential functional roles. The ten members of the CaV channel family are classified according to expression of their pore-forming α-subunit; moreover, co-expression of accessory α2δ, β and γ confers a spectrum of biophysical characteristics including voltage dependence of activation and inactivation, current amplitude and activation/inactivation kinetics. CaV channels have traditionally been studied in excitable cells including neurones, smooth muscle, skeletal muscle and cardiac cells, and drugs targeting the channels are used in the treatment of hypertension and epilepsy. There is emerging evidence that several CaV channels are differentially expressed in cancer cells compared to their normal counterparts. Interestingly, a number of CaV channels also have non-canonical functions and are involved in transcriptional regulation of the expression of other proteins including potassium channels. Pharmacological studies show that CaV canonical function contributes to the fundamental biology of proliferation, cell-cycle progression and apoptosis. This raises the intriguing possibility that calcium channel blockers, approved for the treatment of other conditions, could be repurposed to treat particular cancers. Further research will reveal the full extent of both the canonical and non-canonical functions of CaV channels in cancer and whether calcium channel blockers are beneficial in cancer treatment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rare cases of possible materno-fetal transmission of cancer have been recorded over the past 100 years but evidence for a shared cancer clone has been very limited. We provide genetic evidence for mother to offspring transmission, in utero, of a leukemic cell clone. Maternal and infant cancer clones shared the same unique BCR-ABL1 genomic fusion sequence, indicating a shared, single-cell origin. Microsatellite markers in the infant cancer were all of maternal origin. Additionally, the infant, maternally- derived cancer cells had a major deletion on one copy of chromosome 6p that included deletion of HLA alleles that were not inherited by the infant (i.e., foreign to the infant), suggesting a possible mechanism for immune evasion.