191 resultados para Building, Brick.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various sources indicate that threats to modern cities lie in the availability of essential streams, among which energy. Most cities are strongly reliant on fossil fuels; not one case of a fully self-sufficient city is known. Engineering resilience is the rate at which a system returns to a single steady or cyclic state following a perturbation. Certain resilience, for the duration of a crisis, would improve the urban capability to survive such a period without drastic measures.
The capability of cities to prepare for and respond to energy crises in the near future is supported by greater or temporary self-sufficiency. The objective of the underlying research is a model for a city – including its surrounding rural area – that can sustain energy crises. Therefore, accurate monitoring of the current urban metabolism is needed for the use of energy. This can be used to pinpoint problem areas. Furthermore, a sustainable energy system is needed, in which the cycle is better closed. This will require a three-stepped approach of energy savings, energy exchange and sustainable energy generation. Essential is the capacity to store energy surpluses for periods of shortage (crises).
The paper discusses the need for resilient cities and the approach to make cities resilient to energy crises.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Awards:
2007 Opus Architecture and Construction Awards - Highly Commended
2008 Architectural Association of Ireland - Selected for Exhibition
2008 RIAI Best Educational Building
2009 RIBA - Short listed International Award
2009 Imagine Inspirational School Design Compendium
2010 Irish Nomination to OECD Compendium of Exemplary Educational Facilities

Reviews and Publications:
2010 World Architecture News
2009 Perspective Vol 18/No 6
2009 Plan - Art of Architecture and Design
2008 Architecture Ireland, Dublin Volume 236
2007 World Architecture News
2008 Ratoath College, McGarry NÍ Éanaigh Architects ISBN 9780955914102

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Awards:
Award Best Leisure Building - 2009 RIAI Irish Architecture Awards
Special Mention 2009 AAI Awards for Excellence in Architecture

Reviews:
2010/11 RIAI Irish Architecture Review, Dublin Volume 1
2009 AAI New Irish Architecture Cork Volume 24
2009 Architecture Ireland, Dublin Volume 245
2009 A+D Magazine, Brussels Issue No.32
2009 A10 Magazine, Amsterdam Issue 26, March April 2009
2009 PLAN Magazine, Dublin March 2009
2009 PLAN Irish Architecture, Dublin Review 2009
2008 The Irish Times, Dublin November 27th
2008 The Architects Journal, London Volume 228, November 13th

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Awards:
Dunshaughlin Pastoral Centre: Nominated Irish Entry, 2010 EU Prize for Contemporary Architecture : Mies van der Rohe Award
Dunshaughlin Pastoral Centre: Highly Commended, 2010 RIAI Irish Architecture Awards : Best Cultural Building Category
Dunshaughlin Pastoral Centre: Highly Commended, 2010 Opus Architecture and Construction Awards

Reviews:
2011 AAI New Irish Architecture Volume 26 Cork
2011 A+D Magazine Brussels, Issue No.36
2010 A10 Amsterdam 26th July 2010
2010 Architecture Ireland, Dublin Volume 251
2010 Plan Magazine, Dublin November December 2010
2010 The Architects Journal, London15 July 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monitoring of temperature and moisture changes in response to different micro-environment of building stones is essential to understand the material behaviour and the degradation mechanisms. From a practical point of view, having a continuous and detailed understanding of micro-environmental changes in building stones helps to assist in their maintenance and repair strategies. Temperature within the stone is usually monitored by means of thermistors, whereas wide ranges of techniques are available for monitoring the moisture. In the case of concrete an electrical resistance method has previously been used as an inexpensive tool for monitoring moisture changes. This paper describes the adaptation of this technique and describes its further development for monitoring moisture movement in building stones.
In this study a block of limestone was subjected to intermittent infrared radiation with programmed cycles of ambient temperature, rainfall and wind conditions in an automated climatic chamber. The temperature and moisture changes at different depths within the stone were monitored by means of bead thermistors and electrical resistance sensors. This experiment has helped to understand the thermal conductivity and moisture transport from surface into deeper parts of the stone at different simulated extreme climatic conditions. Results indicated that variations in external ambient conditions could substantially affect the moisture transport and temperature profile within the micro-environment of building stones and hence they could have a significant impact on stone decay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weathering of stone is one of the major reasons for the damage of stone masonry structures and it takes place due to interlinked chemical, physical and biological processes in stones. The key parameters involved in the deterioration processes are temperature, moisture and salt. It is now known that the sudden variations in temperature and moisture greatly accelerate the weathering process of the building stone fabric. Therefore, in order to monitor these sudden variations an effective and continuous monitoring system is needed. Furthermore, it must consist of robust sensors which are accurate and can survive in the harsh environments experienced in and around masonry structures. Although salt penetration is important for the rate of deterioration of stone masonry structures, the processes involved are much slower than the damage associated with temperature and moisture variations. Therefore, in this paper a novel fibre optic temperature cum relative humidity sensor is described and its applicability in monitoring building stones demonstrated. The performance of the sensor is assessed in an experiment comprising wetting and drying of limestone blocks. The results indicate that the novel fibre optic relative humidity sensor which is tailor made for applications in masonry structures performed well in wetting and drying tests, whilst commercial capacitance based sensors failed to recover during the drying regime for a long period after a wetting regime. That is, the fibre optic sensor has the capability to measure both sorption and de-sorption characteristics of stone blocks. This sensor is used in a test wall in Oxford and the data thus obtained strengthened the laboratory observations.