296 resultados para Anthony G. Marshall
Resumo:
Background and purpose: Radiotherapy is widely used to palliate local symptoms in non-small-cell lung cancer. Using conventional X-ray simulation, it is often difficult to accurately localize the extent of the tumour. We report a randomized, double blind trial comparing target localization with conventional and virtual simulation.Methods: Eighty-six patients underwent both conventional and virtual simulation. The conventional simulator films were compared with digitally reconstructed radiographs (DRRs) produced from the computed tomography (CT) data. The treatment fields defined by the clinicians using each modality were compared in terms of field area, position and the implications for target coverage.Results: Comparing fields defined by each study arm, there was a major mis-match in coverage between fields in 66.2% of cases, and a complete match in only 5.2% of cases. In 82.4% of cases, conventional simulator fields were larger (mean 24.5+/-5.1% (95% confidence interval)) than CT-localized fields, potentially contributing to a mean target under-coverage of 16.4+/-3.5% and normal tissue over-coverage of 25.4+/-4.2%.Conclusions: CT localization and virtual simulation allow more accurate definition of the target volume. This could enable a reduction in geographical misses, while also reducing treatment-related toxicity.
Resumo:
WebCom-G is a fledgling Grid Operating System, designed to provide independent service access through interoperability with existing middlewares. It offers an expressive programming model that automatically handles task synchronisation – load balancing, fault tolerance, and task allocation are handled at the WebCom-G system level – without burdening the application writer. These characteristics, together with the ability of its computing model to mix evaluation strategies to match the characteristics of the geographically dispersed facilities and the overall problem- solving environment, make WebCom-G a promising grid middleware candidate.
Resumo:
Background. Kidney Disease Outcomes Quality Initiative (KDOQI) chronic kidney disease (CKD) guidelines have focused on the utility of using the modified four-variable MDRD equation (now traceable by isotope dilution mass spectrometry IDMS) in calculating estimated glomerular filtration rates (eGFRs). This study assesses the practical implications of eGFR correction equations on the range of creatinine assays currently used in the UK and further investigates the effect of these equations on the calculated prevalence of CKD in one UK region Methods. Using simulation, a range of creatinine data (30–300 µmol/l) was generated for male and female patients aged 20–100 years. The maximum differences between the IDMS and MDRD equations for all 14 UK laboratory techniques for serum creatinine measurement were explored with an average of individual eGFRs calculated according to MDRD and IDMS 30 ml/min/1.73 m2. Observed data for 93,870 patients yielded a first MDRD eGFR 3 months later of which 47 093 (71%) continued to have an eGFR