215 resultados para Accelerated proton decay


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gastric atrophy is associated with Helicobacter pylori infection. Conflicting results have been obtained as to whether acid suppressant therapy hastens the development or changes the distribution of atrophy in the stomach. The aim of this study was to investigate whether concomitant proton pump inhibitor (PPI) therapy in H. pylori-infected individuals resulted in an increase or an alteration in atrophy distribution and whether this was reflected by the plasma gastrin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative biological effectiveness (RBE) of passive scattered (PS) and pencil beam scanned (PBS) proton beam delivery techniques for uniform beam configurations was determined by clonogenic survival. The radiobiological impact of modulated beam configurations on cell survival occurring in- or out-of-field for both delivery techniques was determined with intercellular communication intact or physically inhibited. Cell survival responses were compared to those observed using a 6 MV photon beam produced with a linear accelerator. DU-145 cells showed no significant difference in survival response to proton beams delivered by PS and PBS or 6 MV photons taking into account a RBE of 1.1 for protons at the centre of the spread out Bragg peak. Significant out-of-field effects similar to those observed for 6 MV photons were observed for both PS and PBS proton deliveries with cell survival decreasing to 50-60% survival for scattered doses of 0.05 and 0.03 Gy for passive scattered and pencil beam scanned beams respectively. The observed out-of-field responses were shown to be dependent on intercellular communication between the in-and out-of-field cell populations. These data demonstrate, for the first time, a similar RBE between passive and actively scanned proton beams and confirm that out-of-field effects may be important determinants of cell survival following exposure to modulated photon and proton fields

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salt weathering is a crucial process that brings about a change in stone, from the scale of landscapes to stone outcrops and natural building stone facades. It is acknowledged that salt weathering is controlled by fluctuations in temperature and moisture, where repeated oscillations in these parameters can cause re-crystallisation, hydration/de-hydration of salts, bringing about stone surface loss in the form of, for example, granular disaggregation, scaling, and multiple flaking. However, this ‘traditional’ view of how salt weathering proceeds may need to be re-evaluated in the light of current and future climatic trends. Indeed, there is considerable scope for the investigation of consequences of climate change on geomorphological processes in general. Building on contemporary research on the ‘deep wetting’ of natural building stones, it is proposed that (as stone may be wetter for longer), ion diffusion may become a more prominent mechanism for the mixing of molecular constituents, and a shift in focus from physical damage to chemical change is suggested. Data from ion diffusion cell experiments are presented for three different sandstone types, demonstrating that salts may diffuse through porous stone relatively rapidly (in comparison to, for example, dense concrete). Pore water from stones undergoing diffusion experiments was extracted and analysed. Factors controlling ion diffusion
relating to ‘time of wetness’ within stones are discussed, (continued saturation, connectivity of pores, mineralogy, behaviour of salts, sedimentary structure), and potential changes in system dynamics as a result of climate change are addressed. System inputs may change in terms of increased moisture input, translating into a greater depth of wetting front. Salts are likely to be ‘stored’ differently in stones, with salt being in solution for longer periods (during prolonged winter wetness). This has myriad implications in terms of the movement of ions by diffusion and the potential for chemical change in the stone (especially in more mobile constituents), leading to a weakening of the stone matrix/grain boundary cementing. The ‘output’ may be mobilisation and precipitation of elements leading to, for example, uneven cementing in the stone. This reduced strength of the stone, or compromised ability of the stone to absorb stress, is likely to make crystallisation a more efficacious mechanism of decay when it does occur. Thus, a delay in the onset of crystallisation while stonework is wet does not preclude exaggerated or accelerated material loss when it finally happens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three isolates each, of nine different Trametes and five other wood inhabiting basidiomycetes, were collected from the indigenous forests of Zimbabwe, and the impact of temperature (20-60 degrees C), osmotic and matric potential (-0.5 to - 8.0 MPa), and their interactions on in vitro growth compared. Generally, there was no significant difference between growth of isolates of the same species in relation to temperature. Temperature relationships of the species studied correlated well with their geographic distributions. Species occurring in hot, dry regions tolerated a wide temperature range, with some showing unusually high thermotolerance (55 degrees, T. socotrana, T. cingulata and T. cervina). There were significant intra-strain differences for individual species in relation to solute potential on glycerol-modified media. Generally, growth of ail species was better on glycerol- and KCl-modified osmotic media than on a metrically-modified medium (PEG 8000) at 25, 30 and 37 degrees. The limits for growth on the osmotic media were significantly wider than matric medium, being - 4.5 to - 5.0 and - 2.5 to - 4.5 MPa, respectively. An Irpex sp. grew at lower water potentials than all other species, with good growth at - 7.0 MPa. This study suggests that the capacity of these fungi for effective growth over a range of temperatures, osmotic and matric potentials contributes to their rapid wood decay capacities in tropical climates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extreme ultraviolet (XUV) and X-ray harmonic spectra produced by intense laser-solid interactions have, so far, been consistent with Doppler upshifted reflection from collective relativistic plasma oscillations-the relativistically oscillating mirror mechanism(1-6). Recent theoretical work, however, has identified a new interaction regime in which dense electron nanobunches are formed at the plasma-vacuum boundary resulting in coherent XUV radiation by coherent synchrotron emission(7,8) (CSE). Our experiments enable the isolation of CSE from competing processes, demonstrating that electron nanobunch formation does indeed occur. We observe spectra with the characteristic spectral signature of CSE-a slow decay of intensity, I, with high-harmonic order, n, as I(n) proportional to n(-1.62) before a rapid efficiency rollover. Particle-in-cell code simulations reveal how dense nanobunches of electrons are periodically formed and accelerated during normal-incidence interactions with ultrathin foils and result in CSE in the transmitted direction. This observation of CSE presents a route to high-energy XUV pulses(7,8) and offers a new window on understanding ultrafast energy coupling during intense laser-solid density interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Density-functional theory (DFT) is used to examine the basal and prism surfaces of ice Ih. Similar surface energies are obtained for the two surfaces; however, in each case a strong dependence of the surface energy on surface proton order is identified. This dependence, which can be as much as 50% of the absolute surface energy, is significantly larger than the bulk dependence (< 1%) on proton order, suggesting that the thermodynamic ground state of the ice surface will remain proton ordered well above the bulk order-disorder temperature of about 72 K. On the basal surface this suggestion is supported by Monte Carlo simulations with an empirical potential and solution of a 2D Ising model with nearest neighbor interactions taken from DFT. Order parameters that define the surface energy of each surface in terms of nearest neighbor interactions between dangling OH bonds (those which point out of the surface into vacuum) have been identified and are discussed. Overall, these results suggest that proton order-disorder effects have a profound impact on the stability of ice surfaces and will most likely have an effect on ice surface reactivity as well as ice crystal growth and morphology. S Supplementary data are available from stacks.iop.org/JPhysCM/22/074209/mmedia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ice Ih is comprised of orientationally disordered water molecules giving rise to positional disorder of the hydrogen atoms in the hydrogen bonded network of the lattice. Here we arrive at a first principles determination of the surface energy of ice Ih and suggest that the surface of ice is significantly more proton ordered than the bulk. We predict that the proton order-disorder transition, which occurs in the bulk at similar to 72 K, will not occur at the surface at any temperature below surface melting. An order parameter which defines the surface energy of ice Ih surfaces is also identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results from first-principles calculations on the subtle energetics of proton ordering in ice phases are shown only to depend on the electrostatic components of the total energy. Proton ordered ice phases can therefore be predicted using electronic structure methods or a tailored potential model. However, analysis of the electron density reveals that high order multipole components, up to hexadecapole, are needed to adequately capture total energy differences between proton ordered and disordered phases. This suggests that current potential models may be unable to reproduce the position of proton ordered ice phases in the phase diagram without extensions to describe high order electrostatics. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Moisture is a well documented, and crucial, control on the nature of stone decay. The term time of wetness has frequently been adopted to describe how long a stone block is wet, with a view to understanding the impact of this on decay processes. Although this term has proved conceptually useful, it has been used in different ways, by different groups to mean mean quite different things. For example, the time of wetness for a stone block surface (the traditional understanding) may be quite different from that of a block interior, controlled by the different dynamics of wetting and drying in those zones. Thus, surface wetting will occur regularly (sometimes swiftly followed by drying, depending on the time of year), with block interior wetting requiring the accumulation of surface moisture to penetrate to depth (more likely in autumn and winter months), and drying out much more slowly. This relatively new but important perspective, framed in the context of climate change, is crucial to understanding the length of time stone may remain damp at depth following a period of prolonged precipitation. The nature and speed of drying is also relevant in quantifying time of wetness of both surfaces and the interior of building stones.
These ideas related to time of wetness have implications for decay processes, specifically how a prolonged time of deep wetness may re-focus the emphasis of salt weathering in natural building stones toward chemical action. Literature on chemical change is discussed, suggesting that chemical change occurring during periods of prolonged wetness is likely to be significant in itself, with implications for weakening the stone (in terms of, for example, cement dissolution or grain boundary weakening) and exacerbating physical damage from salt crystallisation when blocks finally dry out.



Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological validation of new radiotherapy modalities is essential to understand their therapeutic potential. Antiprotons have been proposed for cancer therapy due to enhanced dose deposition provided by antiproton-nucleon annihilation. We assessed cellular DNA damage and relative biological effectiveness (RBE) of a clinically relevant antiproton beam. Despite a modest LET (,19 keV/mm), antiproton spread out Bragg peak (SOBP) irradiation caused significant residual c-H2AX foci compared to X-ray, proton and antiproton plateau irradiation. RBE of ,1.48 in the SOBP and ,1 in the plateau were measured and used for a qualitative effective dose curve comparison with proton and carbon-ions. Foci in the antiproton SOBP were larger and more structured compared to X-rays, protons and carbon-ions. This is likely due to overlapping particle tracks near the annihilation vertex, creating spatially correlated DNA lesions. No biological effects were observed at 28–42 mm away from the primary beam suggesting minimal risk from long-range secondary particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biased agonism of the G protein-coupled receptors (GPCRs), where in addition to a traditional G protein-signalling pathway a GPCR promotes intracellular signals though ß-arrestin, is a novel paradigm in pharmacology. Biochemical and biophysical studies have suggested that a GPCR forms a distinct ensemble of conformations signalling through the G protein and ß-arrestin. Here we report on the dynamics of the ß2 adrenergic receptor bound to the ß-arrestin and G protein biased agonists and the empty receptor to further characterize the receptor conformational changes caused by biased agonists. We use conventional and accelerated molecular dynamics (aMD) simulations to explore the conformational transitions of the GPCR from the active state to the inactive state. We found that aMD simulations enable monitoring the transition within the nanosecond timescale while capturing the known microscopic characteristics of the inactive states, such as the ionic lock, the inward position of F6.44, and water clusters. Distinct conformational states are shown to be stabilized by each biased agonist. In particular, in simulations of the receptor with the ß-arrestin biased agonist, N-cyclopentylbutanepherine we observe a different pattern of motions in helix 7 when compared to simulations with the G protein biased agonist, Salbutamol that involves perturbations of the network of interactions within the NPxxY motif. Understanding the network of interactions induced by biased ligands and the subsequent receptor conformational shifts will lead to development of more efficient drugs. © 2013 American Chemical Society