172 resultados para 1995_12071128 Optics-9
Resumo:
The propagation of linear and nonlinear electrostatic waves is investigated in a magnetized anisotropic electron-positron-ion (e-p-i) plasma with superthermal electrons and positrons. A two-dimensional plasma geometry is assumed. The ions are assumed to be warm and anisotropic due to an external magnetic field. The anisotropic ion pressure is defined using the double adiabatic Chew-Golberger-Low (CGL) theory. In the linear regime, two normal modes are predicted, whose characteristics are investigated parametrically, focusing on the effect of superthermality of electrons and positrons, ion pressure anisotropy, positron concentration and magnetic field strength. A Zakharov-Kuznetsov (ZK) type equation is derived for the electrostatic potential (disturbance) via a reductive perturbation method. The parametric role of superthermality, positron content, ion pressure anisotropy and magnetic field strength on the characteristics of solitary wave structures is investigated. Following Allen and Rowlands [J. Plasma Phys. 53, 63 (1995)], we have shown that the pulse soliton solution of the ZK equation is unstable to oblique perturbations, and have analytically traced the dependence of the instability growth rate on superthermality and ion pressure anisotropy.
Resumo:
We demonstrate for the first time that fine varying of the density gradient of a plasma mirror along with laser spatial phase on target allows total control over the harmonic generation mechanisms and harmonic spatial properties. An analytical model is also proposed. © OSA 2013.
Resumo:
Aims. We investigated the response of the solar atmosphere to non-thermal electron beam heating using the radiative transfer and hydrodynamics modelling code RADYN. The temporal evolution of the parameters that describe the non-thermal electron energy distribution were derived from hard X-ray observations of a particular flare, and we compared the modelled and observed parameters.
Methods. The evolution of the non-thermal electron beam parameters during the X1.5 solar flare on 2011 March 9 were obtained from analysis of RHESSI X-ray spectra. The RADYN flare model was allowed to evolve for 110 s, after which the electron beam heating was ended, and was then allowed to continue evolving for a further 300 s. The modelled flare parameters were compared to the observed parameters determined from extreme-ultraviolet spectroscopy.
Results. The model produced a hotter and denser flare loop than that observed and also cooled more rapidly, suggesting that additional energy input in the decay phase of the flare is required. In the explosive evaporation phase a region of high-density cool material propagated upward through the corona. This material underwent a rapid increase in temperature as it was unable to radiate away all of the energy deposited across it by the non-thermal electron beam and via thermal conduction. A narrow and high-density (ne ≤ 1015 cm-3) region at the base of the flare transition region was the source of optical line emission in the model atmosphere. The collision-stopping depth of electrons was calculated throughout the evolution of the flare, and it was found that the compression of the lower atmosphere may permit electrons to penetrate farther into a flaring atmosphere compared to a quiet Sun atmosphere.
Resumo:
Energies and lifetimes are reported for the lowest 375 levels of five Br-like ions, namely SrIV, YV, ZrVI, NbVII, and MoVIII, mostly belonging to the 4s<sup>2</sup>4p<sup>5</sup>, 4s<sup>2</sup>4p<sup>4</sup>4ℓ, 4s4p<sup>6</sup>, 4s<sup>2</sup>4p<sup>4</sup>5ℓ, 4s<sup>2</sup>4p<sup>3</sup>4d<sup>2</sup>, 4s4p<sup>5</sup>4ℓ, and 4s4p<sup>5</sup>5ℓ configurations. Extensive configuration interaction has been included and the general-purpose relativistic atomic structure package (grasp) has been adopted for the calculations. Additionally, radiative rates are listed among these levels for all E1, E2, M1, and M2 transitions. From a comparison with the measurements, the majority of our energy levels are assessed to be accurate to better than 2%, although discrepancies between theory and experiment for a few are up to 6%. An accuracy assessment of the calculated radiative rates (and lifetimes) is more difficult, because no prior results exist for these ions.
Resumo:
The microstructural evolution during short-term (up to 3000 hours) thermal exposure of three 9/12Cr heat-resistant steels was studied, as well as the mechanical properties after exposure. The tempered martensitic lath structure, as well as the precipitation of carbide and MX type carbonitrides in the steel matrix, was stable after 3000 hours of exposure at 873 K (600 °C). A microstructure observation showed that during the short-term thermal exposure process, the change of mechanical properties was caused mainly by the formation and growth of Laves-phase precipitates in the steels. On thermal exposure, with an increase of cobalt and tungsten contents, cobalt could promote the segregation of tungsten along the martensite lath to form Laves phase, and a large size and high density of Laves-phase precipitates along the grain boundaries could lead to the brittle intergranular fracture of the steels.
Resumo:
We report the results of our search for the progenitor candidate of SN 2013dk, a Type Ic supernova (SN) that exploded in the Antennae galaxy system. We compare pre-explosion Hubble Space Telescope (HST) archival images with SN images obtained using adaptive optics at the ESO Very Large Telescope. We isolate the SN position to within 3σ uncertainty radius of 0.02 arcsec and show that there is no detectable point source in any of the HST filter images within the error circle. We set an upper limit to the absolute magnitude of the progenitor to be MF555W ≳ -5.7, which does not allow Wolf-Rayet (WR) star progenitors to be ruled out. A bright source appears 0.17 arcsec away, which is either a single bright supergiant or compact cluster, given its absolute magnitude of MF555W = -9.02 ± 0.28 extended wings and complex environment. However, even if this is a cluster, the spatial displacement of SN 2013dk means that its membership is not assured. The strongest statement that we can make is that in the immediate environment of SN 2013dk (within 10 pc or so), we find no clear evidence of either a point source coincident with the SN or a young stellar cluster that could host a massive WR progenitor.
Resumo:
Tephrochronological age models and 48 14C age determinations on molluscs and foraminifera (planktonic and benthic) are applied for the calculation of marine 14C reservoir age variability during a time period covering the Heinrich event H1 to early Holocene (16–9 cal kyr BP). Our data source consists of four high-resolution marine sediment cores (HM107-04, HM107-05, MD99-2271, MD99-2275) from the North Icelandic shelf. The marine reservoir age (ΔR) is found to be extremely variable, ranging from 385 to 1065 14C years. Extreme ΔR values occur at the end of H1, with values around 1000 14C years (~15 cal kyr BP), probably due to reduced northward flow of well-ventilated subtropical surface waters and a southward expansion of polar waters, as well as an expansion of sea ice limiting air-sea gas exchange. With the onset of the Bølling-Allerød interstadial, the ΔR values decrease towards 0 14C years suggesting a more vigorous North Atlantic Current and an active meridional overturning circulation system. During the Younger Dryas stadial, ΔR values are consistently around 700 14C years suggesting e renewed expansion of polar waters and a weakened meridional overtuning circulation. Interestingly, ΔR values remain high (~200 14C years) at the onset of the Holocene suggesting continued high influence of polar waters. Subsequently, ΔR values rapidly decrease to ~¬ 250 14C years around 11 cal kyr BP, indicating increased air-sea CO2 exchange with the coeval atmosphere. The ΔR values average around 0 14C years from around 10.5 to 9.0 cal kyr BP.