163 resultados para 1502
Resumo:
Three distal tephra layers or cryptotephras have been detected within a sedimentary sequence from the Netherlands that spans the last glacial-interglacial transition. Geochemical analyses identify one as the Vedde Ash, which represents the southernmost discovery of this mid-Younger Dryas tephra so far. This tephra was found as a distinct horizon in three different cores sampled within the basin. The remaining two tephras have not been geochemically ‘fingerprinted’, partly due to low concentrations and uneven distributions of shards within the sequences sampled. Nevertheless, there is the potential for tracing these tephra layers throughout the Netherlands and into other parts of continental Europe. Accordingly, the possibilities for precise correlation of Dutch palaeoenvironmental records with other continental, marine and ice-core records from the North Atlantic region are highlighted.
Resumo:
The pleiotropic effects of host defence peptides (HDPs), including the ability to kill microorganisms, enhance re-epithelialisation and increase angiogenesis, indicates a role for these important peptides as potential therapeutic agents in the treatment of chronic, non-healing wounds. However, the maintenance of peptide integrity, through resistance to degradation by the array of proteinases present at the wound site, is a prerequisite for clinical success. In this study we explored the degradation of exogenous LL-37, one such HDP, by wound fluid from diabetic foot ulcers to determine its susceptibility to proteolytic degradation. Our results suggest that LL-37 is unstable in the diabetic foot ulcer microenvironment. Following overnight treatment with wound fluid, LL-37 was completely degraded. Analysis of cleavage sites suggested potential involvement of both host- and bacterial-derived proteinases. The degradation products were shown to retain some antibacterial activity against Pseudomonas aeruginosa but were inactive against Staphylococcus aureus. In conclusion, our data suggest that stabilising selected peptide bonds within the sequence of LL-37 would represent an avenue for future research prior to clinical studies to address its potential as an exogenously-applied therapeutic in diabetic wounds.
Resumo:
Biofilm growth on stone surfaces is a significant contributing factor to stone biodeterioration. Current market based biocides are hazardous to the environment and to public health. We have investigated the photo-dynamic effect of methylene blue (MB) in the presence of hydrogen peroxide (H2O2) on the destruction of the cyanobacterium Synechococcus leopoliensis (S. leopoliensis) under irradiation with visible light. Data presented in this paper illustrate that illumination of S. leopoliensis in the presence of a photosensitiser (MB) and H2O2 results in the decomposition of both the cyanobacterium and the photosensitiser. The presence of MB and H2O2 affects the viability of the photosensitiser and the cyanobacterium with the fluorescence of both decreasing by 80% over the irradiation time investigated. The photo-dynamic effect was observed under aerobic and anaerobic conditions indicating that oxygen was not necessary for the process. This novel combination could be effective for the remediation of biofilm colonised stone surfaces
Resumo:
TiO2 photocatalysis has demonstrated efficacy as a treatment process for water contaminated with chemical pollutants. When exposed to UVA light TiO2 also demonstrates an effective bactericidal activity. The mechanism of this process has been reported to involve attack by valence band generated hydroxyl radicals. In this study when three common bacterial pathogens, Escherichia coli, Salmonella enterica serovar Enteritidis and Pseudomonas aeruginosa, were exposed to TiO2 and UVA light a substantial decrease in bacterial numbers was observed. Control experiments in which all three pathogens were exposed to UVA light only resulted in a similar reduction in bacterial numbers. Moreover, exposure to UVA light alone resulted in the production of a smaller than average colony phenotype among the surviving bacteria, for all three pathogens examined, a finding which was not observed following treatment with UVA and TiO2. Small slow growing colonies have been described for several pathogenic bacteria and are referred to as small colony variants. Several studies have demonstrated an association between small colony variants and persistent, recurrent and antibiotic resistant infections. We propose that the production of small colony variants of pathogenic bacteria following UVA treatment of drinking water may represent a health hazard. As these small colony variants were not observed with the UVA/TiO2 system this potential hazard is not a risk when using this technology. It would also appear that the bactericidal mechanism is different with the UVA/TiO2 process compared to when UVA light is used alone.
Resumo:
Cyanobacterial toxins present in drinking water sources pose a considerable threat to human health. Conventional water treatment systems have proven unreliable for the removal of these toxins and hence new techniques have been investigated. Previous work has shown that TiO2 photocatalysis effectively destroys microcystin-LR in aqueous solutions, however, a variety of by-products were generated. In this paper, we report a mechanistic study of the photocatalytic destruction of microcystin-LR. In particular, the toxicity by-products of the process have been studied using both brine shrimp and protein phosphatase bioassays.
Resumo:
Carbon dioxide was reduced photocatalytically using aqueous CdS or ZnS colloids containing tetramethylammonium chloride to give the dimeric and tetrameric products namely, oxalate, glyoxylate, glycolate and tartrate. A model is presented to explain the role of the tetramethylammonium ions. Studies were also performed using ZnO, SiC, BaTiO3 and Sr TiO3, which in the absence of tetramethylammonium ions produced formate and formaldehyde. The relative quantum efficiencies of the six semiconductors were related to their band gaps and conduction band potentials. The role and effectiveness of several 'hole acceptor' (electron donor) compounds in this process is shown to be related to their redox potentials.
Resumo:
We have previously reported the effectiveness of TiO2 photocatalysis in the destruction of the cyanotoxin microcystin-LR [P.K.J. Robertson, L.A. Lawton, B. Münch, J. Rouzade, J. Chem. Soc., Chem. Commun., 4 (1997) 393; P.K.J. Robertson, L.A. Lawton, B. Münch, B.J.P.A. Cornish, J. Adv. Oxid. Technol., in press]. In this paper we report an investigation of factors which influence the rate of the toxin destruction at the catalyst surface. A primary kinetic isotope effect of approximately 3 was observed when the destruction was performed in a heavy water solvent. Hydroxylated compounds were observed as products of the destruction process. No destruction was observed when the process was investigated under a nitrogen atmosphere.
Resumo:
In the context of bipartite bosonic systems, two notions of classicality of correlations can be defined: P-classicality, based on the properties of the Glauber-Sudarshan P-function; and C-classicality, based on the entropic quantum discord. It has been shown that these two notions are maximally inequivalent in a static (metric) sense -- as they coincide only on a set of states of zero measure. We extend and reinforce quantitatively this inequivalence by addressing the dynamical relation between these types of non-classicality in a paradigmatic quantum-optical setting: the linear mixing at a beam splitter of a single-mode Gaussian state with a thermal reference state. Specifically, we show that almost all P-classical input states generate outputs that are not C-classical. Indeed, for the case of zero thermal reference photons, the more P-classical resources at the input the less C-classicality at the output. In addition, we show that the P-classicality at the input -- as quantified by the non-classical depth -- does instead determine quantitatively the potential of generating output entanglement. This endows the non-classical depth with a new operational interpretation: it gives the maximum number of thermal reference photons that can be mixed at a beam splitter without destroying the output entanglement.
Resumo:
The electrochemical promotion of a platinum catalyst for ethylene oxidation on a dual chamber membrane reactor was studied. The catalyst was supported on a La0.6Sr0.4Co0.2Fe0.803 membrane. Due the supporting membrane's electronic conductivity it is possible to promote the reaction by controlling the oxygen chemical potential difference across the membrane. Upon establishment of an oxygen potential difference across the membrane, oxygen species can migrate and spillover onto the catalyst surface, modifying the catalytic activity. Initial experiments showed an overall promotion of approximately one order of magnitude of the reaction rate of ethylene, under an oxygen atmosphere on the sweep side of the membrane reactor, as compared with the rate under an inert sweep gas. The reaction rate can keep its promoted state even after the flow of oxygen on the sweep side was interrupted. This behavior caused further promotion with every experiment cycle. The causes of permanent promotion and on demonstrating controllable promotion of the catalytic activity are presented. This is an abstract of a paper presented at the AIChE Annual Meeting (San Francisco, CA 11/12-17/2006).
Resumo:
Sixty samples of milk, Halloumi cheese and local grazing plants (i.e. shrubs) were collected over a year from dairy farms located on three different locations of Cyprus. Major and trace elements were quantified using inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Milk and Halloumi cheese produced in different geographical locations presented significant differences in the concentration of some of the elements analysed. Principal component analysis showed grouping of samples according to the region of production for both milk and cheese samples. These findings show that the assay of elements can provide useful fingerprints for the characterisation of dairy products.
Resumo:
The last decade has witnessed an unprecedented growth in availability of data having spatio-temporal characteristics. Given the scale and richness of such data, finding spatio-temporal patterns that demonstrate significantly different behavior from their neighbors could be of interest for various application scenarios such as – weather modeling, analyzing spread of disease outbreaks, monitoring traffic congestions, and so on. In this paper, we propose an automated approach of exploring and discovering such anomalous patterns irrespective of the underlying domain from which the data is recovered. Our approach differs significantly from traditional methods of spatial outlier detection, and employs two phases – i) discovering homogeneous regions, and ii) evaluating these regions as anomalies based on their statistical difference from a generalized neighborhood. We evaluate the quality of our approach and distinguish it from existing techniques via an extensive experimental evaluation.
Resumo:
The aim of this work was to study the possible deactivation effects of biogas trace ammonia concentrations on methanation catalysts. It was found that small amounts of ammonia led to a slight decrease in the catalyst activity. A decrease in the catalyst deactivation by carbon formation was also observed, with ammonia absorbed on the active catalyst sites. This was via a suppression of the carbon formation and deposition on the catalyst, since it requires a higher number of active sites than for the methanation of carbon oxides. From the paper findings, no special pretreatment for ammonia removal from the biogas fed to a methanation process is required.
Resumo:
In this paper, a novel nanolens with super resolution, based on the photon nanojet effect through dielectric nanostructures in visible wavelengths, is proposed. The nanolens is made from plastic SU-8, consisting of parallel semi-cylinders in an array. This paper focuses on the lens designed by numerical simulation with the finite-difference time domain method and nanofabrication of the lens by grayscale electron beam lithography combined with a casting/bonding/lift-off transfer process. Monte Carlo simulation for injected charge distribution and development modeling was applied to define the resultant 3D profile in PMMA as the template for the lens shape. After the casting/bonding/lift-off process, the fabricated nanolens in SU-8 has the desired lens shape, very close to that of PMMA, indicating that the pattern transfer process developed in this work can be reliably applied not only for the fabrication of the lens but also for other 3D nanopatterns in general. The light distribution through the lens near its surface was initially characterized by a scanning near-field optical microscope, showing a well defined focusing image of designed grating lines. Such focusing function supports the great prospects of developing a novel nanolithography based on the photon nanojet effect.