259 resultados para percutaneous transthoracic lung biopsy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cystic fibrosis (CF) is the most common inherited lethal disease in Caucasians which results in multiorgan dysfunction. However, 85% of the deaths are due to pulmonary infections. Infection by Burkholderia cenocepacia (B. cepacia) is a particularly lethal threat to CF patients because it causes severe and persistent lung inflammation and is resistant to nearly all available antibiotics. In CFTR Delta F508 (Delta F508) mouse macrophages, B. cepacia persists in vacuoles that do not fuse with the lysosomes and mediates increased production of IL-1 beta. It is believed that intracellular bacterial survival contributes to the persistence of the bacterium. Here we show for the first time that in wild-type but not in Delta F508 macrophages, many B. cepacia reside in autophagosomes that fuse with lysosomes at later stages of infection. Accordingly, association and intracellular survival of B. cepacia are higher in CFTR-Delta F508 macrophages than in WT macrophages. An autophagosome is a compartment that engulfs nonfunctional organelles and parts of the cytoplasm then delivers them to the lysosome for degradation to produce nutrients during periods of starvation or stress. Furthermore, we show that B. cepacia downregulates autophagy genes in WT and Delta F508 macrophages. However, autophagy dysfunction is more pronounced in Delta F508 macrophages since they already have compromised autophagy activity. We demonstrate that the autophagy-stimulating agent, rapamycin markedly decreases B. cepacia infection in vitro by enhancing the clearance of B. cepacia via induced autophagy. In vivo, rapamycin decreases bacterial burden in the lungs of CF mice and drastically reduces signs of lung inflammation. Together, our studies reveal that if efficiently activated, autophagy can control B. cepacia infection and ameliorate the associated inflammation. Therefore, autophagy is a novel target for new drug development for CF patients to control B. cepacia infection and accompanying inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic lung infection by opportunistic pathogens, such as Pseudomonas aeruginosa and members of the Burkholderia cepacia complex, is a major cause of morbidity and mortality in patients with cystic fibrosis. Outer membrane proteins (OMPs) of gram-negative bacteria are promising vaccine antigen candidates. In this study, we evaluated the immunogenicity, protection, and cross-protection conferred by intranasal vaccination of mice with OMPs from B. multivorans plus the mucosal adjuvant adamantylamide dipeptide (AdDP). Robust mucosal and systemic immune responses were stimulated by vaccination of naive animals with OMPs from B. multivorans and B. cenocepacia plus AdDP. Using a mouse model of chronic pulmonary infection, we observed enhanced clearance of B. multivorans from the lungs of vaccinated animals, which correlated with OMP-specific secretory immunoglobulin A responses. Furthermore, OMP-immunized mice showed rapid resolution of the pulmonary infection with virtually no lung pathology after bacterial challenge with B. multivorans. In addition, we demonstrated that administration of B. multivorans OMP vaccine conferred protection against B. cenocepacia challenge in this mouse infection model, suggesting that OMPs provide cross-protection against the B. cepacia complex. Therefore, we concluded that mucosal immunity to B. multivorans elicited by intranasal vaccination with OMPs plus AdDP could prevent early steps of colonization and infection with B. multivorans and also ameliorate lung tissue damage, while eliciting cross-protection against B. cenocepacia. These results support the notion that therapies leading to increased mucosal immunity in the airways may help patients with cystic fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The clinical course of cystic fibrosis (CF) lung disease varies between patients bearing identical CFTR mutations. This suggests that additional genetic modifiers may contribute to the pulmonary phenotype. The highly conserved ancestral haplotype 8.1 (8.1AH), carried by up to one quarter of Caucasians, comprises linked gene polymorphisms on chromosome 6 that play a key role in the inflammatory response: LTA +252A/G; TNF -308G/A, HSP70-2 +1267A/G and RAGE -429T/C. As inflammation is a key component inducing CF lung damage, we investigated whether the 8.1AH represents a lung function modifier in CF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: Background: A20 and TAX1BP1 interact to negatively regulate NF-
-driven inflammation. A20 expression is altered in F508del/F508del
patients. Here we explore the effect of CFTR and CFTR genotype on A20 and
TAX1BP1expression. The relationship with lung function is also assessed.
Methods: Primary Nasal Epithelial cells (NECs) from CF patients
(F508del/F508del, n=8, R117H/F508del, n=6) and Controls (age-matched,
n=8), and 16HBE14o- cells were investigated. A20 and TAX1BP1 gene
expression was determined by qPCR.
Results: Silencing of CFTR reduced basal A20 expression. Following LPS
stimulation A20 and TAX1BP1 expression was induced in control NECs and
reduced in CF NECs, broadly reflecting the CF genotype: F508del/F508del
had lower expression than R117H/F508del. A20, but not TAX1BP1 expression,
was proportional to FEV1 in all CF patients (r=0.968, p<0.001).
Conclusions: A20 expression is reduced in CF and is proportional to FEV1.
Pending confirmation in a larger study, A20 may prove a novel predictor
of CF inflammation/disease severity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In patients with cystic fibrosis (CF) lung damage secondary to chronic infection is the main cause of death. Treatment of lung disease to reduce the impact of infection, inflammation and subsequent lung injury is therefore of major importance. Here we discuss the present status of antibiotic therapy for the major pathogens in CF airways, including prophylaxis against infection, eradication of early infection, suppression of chronic infection, and the treatment of infective exacerbations. We outline measures to optimize maintenance treatment for infection in the light of novel antibiotic drug formulations. We discuss new developments in culture-independent microbiological diagnostic techniques and the use of tools for monitoring the success of antibiotic treatment courses. Finally, cost-effectiveness analyses for antibiotic treatment in CF patients are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinically, our ability to predict disease outcome for patients with early stage lung cancer is currently poor. To address this issue, tumour specimens were collected at surgery from non-small cell lung cancer (NSCLC) patients as part of the European Early Lung Cancer (EUELC) consortium. The patients were followed-up for three years post-surgery and patients who suffered progressive disease (PD, tumour recurrence, metastasis or a second primary) or remained disease-free (DF) during follow-up were identified. RNA from both tumour and adjacent-normal lung tissue was extracted from patients and subjected to microarray expression profiling. These samples included 36 adenocarcinomas and 23 squamous cell carcinomas from both PD and DF patients. The microarray data was subject to a series of systematic bioinformatics analyses at gene, network and transcription factor levels. The focus of these analyses was 2-fold: firstly to determine whether there were specific biomarkers capable of differentiating between PD and DF patients, and secondly, to identify molecular networks which may contribute to the progressive tumour phenotype. The experimental design and analyses performed permitted the clear differentiation between PD and DF patients using a set of biomarkers implicated in neuroendocrine signalling and allowed the inference of a set of transcription factors whose activity may differ according to disease outcome. Potential links between the biomarkers, the transcription factors and the genes p21/CDKN1A and Myc, which have previously been implicated in NSCLC development, were revealed by a combination of pathway analysis and microarray meta-analysis. These findings suggest that neuroendocrine-related genes, potentially driven through p21/CDKN1A and Myc, are closely linked to whether or not a NSCLC patient will have poor clinical outcome.