148 resultados para parallel corpora
Resumo:
In order to carry out high-precision machining of aerospace structural components with large size, thin wall and complex surface, this paper proposes a novel parallel kinematic machine (PKM) and formulates its semi-analytical theoretical stiffness model considering gravitational effects that is verified by stiffness experiments. From the viewpoint of topology structure, the novel PKM consists of two substructures in terms of the redundant and overconstrained parallel mechanisms that are connected by two interlinked revolute joints. The theoretical stiffness model of the novel PKM is established based upon the virtual work principle and deformation superposition principle after mapping the stiffness models of substructures from joint space to operated space by Jacobian matrices and considering the deformation contributions of interlinked revolute joints to two substructures. Meanwhile, the component gravities are treated as external payloads exerting on the end reference point of the novel PKM resorting to static equivalence principle. This approach is proved by comparing the theoretical stiffness values with experimental stiffness values in the same configurations, which also indicates equivalent gravity can be employed to describe the actual distributed gravities in an acceptable accuracy manner. Finally, on the basis of the verified theoretical stiffness model, the stiffness distributions of the novel PKM are illustrated and the contributions of component gravities to the stiffness of the novel PKM are discussed.
Resumo:
As a newly invented parallel kinematic machine (PKM), Exechon has attracted intensive attention from both academic and industrial fields due to its conceptual high performance. Nevertheless, the dynamic behaviors of Exechon PKM have not been thoroughly investigated because of its structural and kinematic complexities. To identify the dynamic characteristics of Exechon PKM, an elastodynamic model is proposed with the substructure synthesis technique in this paper. The Exechon PKM is divided into a moving platform subsystem, a fixed base subsystem and three limb subsystems according to its structural features. Differential equations of motion for the limb subsystem are derived through finite element (FE) formulations by modeling the complex limb structure as a spatial beam with corresponding geometric cross sections. Meanwhile, revolute, universal, and spherical joints are simplified into virtual lumped springs associated with equivalent stiffnesses and mass at their geometric centers. Differential equations of motion for the moving platform are derived with Newton's second law after treating the platform as a rigid body due to its comparatively high rigidity. After introducing the deformation compatibility conditions between the platform and the limbs, governing differential equations of motion for Exechon PKM are derived. The solution to characteristic equations leads to natural frequencies and corresponding modal shapes of the PKM at any typical configuration. In order to predict the dynamic behaviors in a quick manner, an algorithm is proposed to numerically compute the distributions of natural frequencies throughout the workspace. Simulation results reveal that the lower natural frequencies are strongly position-dependent and distributed axial-symmetrically due to the structure symmetry of the limbs. At the last stage, a parametric analysis is carried out to identify the effects of structural, dimensional, and stiffness parameters on the system's dynamic characteristics with the purpose of providing useful information for optimal design and performance improvement of the Exechon PKM. The elastodynamic modeling methodology and dynamic analysis procedure can be well extended to other overconstrained PKMs with minor modifications.
Resumo:
Routine molecular diagnostics modalities are unable to confidently detect low frequency mutations (<5-15%) that may indicate response to targeted therapies. We confirm the presence of a low frequency NRAS mutation in a rectal cancer patient using massively parallel sequencing when previous Sanger sequencing results proved negative and Q-PCR testing inconclusive. There is increasing evidence that these low frequency mutations may confer resistance to anti-EGFR therapy. In view of negative/inconclusive Sanger sequencing and Q-PCR results for NRAS mutations in a KRAS wt rectal case, the diagnostic biopsy and 4 distinct subpopulations of cells in the resection specimen after conventional chemo/radiotherapy were massively parallel sequenced using the Ion Torrent PGM. DNA was derived from FFPE rectal cancer tissue and amplicons produced using the Cancer Hotspot Panel V2 and sequenced using semiconductor technology. NRAS mutations were observed at varying frequencies in the patient biopsy (12.2%) and all four subpopulations of cells in the resection with an average frequency of 7.3% (lowest 2.6%). The results of the NGS also provided the mutational status of 49 other genes that may have prognostic or predictive value, including KRAS and PIK3CA. NGS technology has been postulated in diagnostics because of its capability to generate results in large panels of clinically meaningful genes in a cost-effective manner. This case illustrates another potential advantage of this technology: its use for detecting low frequency mutations that may influence therapeutic decisions in cancer treatment.
Resumo:
We address the problem of mining interesting phrases from subsets of a text corpus where the subset is specified using a set of features such as keywords that form a query. Previous algorithms for the problem have proposed solutions that involve sifting through a phrase dictionary based index or a document-based index where the solution is linear in either the phrase dictionary size or the size of the document subset. We propose the usage of an independence assumption between query keywords given the top correlated phrases, wherein the pre-processing could be reduced to discovering phrases from among the top phrases per each feature in the query. We then outline an indexing mechanism where per-keyword phrase lists are stored either in disk or memory, so that popular aggregation algorithms such as No Random Access and Sort-merge Join may be adapted to do the scoring at real-time to identify the top interesting phrases. Though such an approach is expected to be approximate, we empirically illustrate that very high accuracies (of over 90%) are achieved against the results of exact algorithms. Due to the simplified list-aggregation, we are also able to provide response times that are orders of magnitude better than state-of-the-art algorithms. Interestingly, our disk-based approach outperforms the in-memory baselines by up to hundred times and sometimes more, confirming the superiority of the proposed method.
Resumo:
This case study deals with the role of time series analysis in sociology, and its relationship with the wider literature and methodology of comparative case study research. Time series analysis is now well-represented in top-ranked sociology journals, often in the form of ‘pooled time series’ research designs. These studies typically pool multiple countries together into a pooled time series cross-section panel, in order to provide a larger sample for more robust and comprehensive analysis. This approach is well suited to exploring trans-national phenomena, and for elaborating useful macro-level theories specific to social structures, national policies, and long-term historical processes. It is less suited however, to understanding how these global social processes work in different countries. As such, the complexities of individual countries - which often display very different or contradictory dynamics than those suggested in pooled studies – are subsumed. Meanwhile, a robust literature on comparative case-based methods exists in the social sciences, where researchers focus on differences between cases, and the complex ways in which they co-evolve or diverge over time. A good example of this is the inequality literature, where although panel studies suggest a general trend of rising inequality driven by the weakening power of labour, marketisation of welfare, and the rising power of capital, some countries have still managed to remain resilient. This case study takes a closer look at what can be learned by applying the insights of case-based comparative research to the method of time series analysis. Taking international income inequality as its point of departure, it argues that we have much to learn about the viability of different combinations of policy options by examining how they work in different countries over time. By taking representative cases from different welfare systems (liberal, social democratic, corporatist, or antipodean), we can better sharpen our theories of how policies can be more specifically engineered to offset rising inequality. This involves a fundamental realignment of the strategy of time series analysis, grounding it instead in a qualitative appreciation of the historical context of cases, as a basis for comparing effects between different countries.
Resumo:
Energy consumption is an important concern in modern multicore processors. The energy consumed by a multicore processor during the execution of an application can be minimized by tuning the hardware state utilizing knobs such as frequency, voltage etc. The existing theoretical work on energy minimization using Global DVFS (Dynamic Voltage and Frequency Scaling), despite being thorough, ignores the time and the energy consumed by the CPU on memory accesses and the dynamic energy consumed by the idle cores. This article presents an analytical energy-performance model for parallel workloads that accounts for the time and the energy consumed by the CPU chip on memory accesses in addition to the time and energy consumed by the CPU on CPU instructions. In addition, the model we present also accounts for the dynamic energy consumed by the idle cores. The existing work on global DVFS for parallel workloads shows that using a single frequency for the entire duration of a parallel application is not energy optimal and that varying the frequency according to the changes in the parallelism of the workload can save energy. We present an analytical framework around our energy-performance model to predict the operating frequencies (that depend upon the amount of parallelism) for global DVFS that minimize the overall CPU energy consumption. We show how the optimal frequencies in our model differ from the optimal frequencies in a model that does not account for memory accesses. We further show how the memory intensity of an application affects the optimal frequencies.