190 resultados para noninvasive brain stimulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary objectives: To determine the understanding of educational professionals around the topic of childhood brain injury and explore the factor structure of the Common Misconceptions about Traumatic Brain Injury Questionnaire (CM-TBI).

Research design: Cross sectional postal survey.

Methods and procedures: The CM-TBI was posted to all educational establishments in one region of the United Kingdom. One representative from each school was asked to complete and return the questionnaire (N = 388).

Main outcomes and results: Differences were demonstrated between those participants who knew someone with a brain injury and those who did not, with a similar pattern being shown for those educators who had taught a child with brain injury. Participants who had taught a child with brain injury demonstrated greater knowledge in areas such as seatbelts/prevention, brain damage, brain injury sequelae, amnesia, recovery, and rehabilitation. Principal components analysis suggested the existence of four factors and the discarding of half the original items of the questionnaire.

Conclusions: In the first European study to explore this issue, we highlight that teachers are ill prepared to cope with children who have sustained a brain injury. Given the importance of a supportive school environment in return to life following hospitalisation, the lack of understanding demonstrated by teachers in this research may significantly impact on a successful return to school.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we explored the potential role of the complement derived anaphylatoxin C5a and the expression of its receptor in mouse brain. Using in situ hybridization, we found that C5a receptor messenger RNA is expressed in mouse brain. In response to intraventricular kainic acid injection, there was marked increase in the C5a receptor messenger RNA expression, particularly in hippocampal formation and cerebral cortex. C5a ligand-binding autoradiography confirmed the functional expression and elevation of the C5a receptor post-lesioning. The expression of Cia receptor messenger RNA in brain was confirmed by northern blot hybridization of total RNA from neuronal and glial cells in vitiro. Based on these findings we explored the role of C5a in mechanisms of signal transduction in brain cells. Treatment of primary cultures of mouse astrocytes with human recombinant C5a resulted in the activation of mitogen-activated extracellular signal-regulated protein kinase. This response appeared to be mediated by the C5a receptor since astrocyte cultures derived from C5a receptor knockout mice were not responsive to the treatment. Understanding the regulation of C5a receptor in brain and mechanisms by which pro-inflammatory C5a modulates specific signal transduction pathways in brain cells is crucial to studies of inflammatory mechanisms in neurodegeneration. (C) 1998 IBRO. Published by Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the first time, a simple and validated reversed-phase liquid chromatography (RP-LC) with fluorescence detection has been developed for the simultaneous analysis of glutamate (Glu), ?-aminobutyric acid (GABA), glycine (Gly) and taurine (Tau) in Wistar and tremor rats brain synaptosomes. The samples were separated on a C18 analytical column with gradient elution of methanol and 0.1 mol L-1 potassium acetate at a flow rate of 1 mL min-1. Total run time was approximately 25 min. All calibration curves exhibited good linearity (r 2 > 0.999) within test ranges. The reproducibility was estimated by intra-and inter-day assays and RSD values were less than 2.48%. The recoveries were between 96.32 and 105.21%. The method was successfully applied to the quantification of amino acids in Wistar and tremor rats brain synaptosomes. Through this developed protocol, the levels of Glu in hippocampal and prefrontal cortical synaptosomes of tremor rats were both significantly elevated than those of adult Wistar rats whereas significantly decreased concentrations of GABA and Gly were observed in the hippocampal region of tremor rats without evident difference in the prefrontal cortex between experimental and control groups. In addition, our studies also showed a marked elevation of Tau in tremor rats hippocampal synaptosomes although there was no pronounced difference in the prefrontal cortical region of Wistar and tremor rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cystic fibrosis (CF) is the most common inherited lethal disease in Caucasians which results in multiorgan dysfunction. However, 85% of the deaths are due to pulmonary infections. Infection by Burkholderia cenocepacia (B. cepacia) is a particularly lethal threat to CF patients because it causes severe and persistent lung inflammation and is resistant to nearly all available antibiotics. In CFTR Delta F508 (Delta F508) mouse macrophages, B. cepacia persists in vacuoles that do not fuse with the lysosomes and mediates increased production of IL-1 beta. It is believed that intracellular bacterial survival contributes to the persistence of the bacterium. Here we show for the first time that in wild-type but not in Delta F508 macrophages, many B. cepacia reside in autophagosomes that fuse with lysosomes at later stages of infection. Accordingly, association and intracellular survival of B. cepacia are higher in CFTR-Delta F508 macrophages than in WT macrophages. An autophagosome is a compartment that engulfs nonfunctional organelles and parts of the cytoplasm then delivers them to the lysosome for degradation to produce nutrients during periods of starvation or stress. Furthermore, we show that B. cepacia downregulates autophagy genes in WT and Delta F508 macrophages. However, autophagy dysfunction is more pronounced in Delta F508 macrophages since they already have compromised autophagy activity. We demonstrate that the autophagy-stimulating agent, rapamycin markedly decreases B. cepacia infection in vitro by enhancing the clearance of B. cepacia via induced autophagy. In vivo, rapamycin decreases bacterial burden in the lungs of CF mice and drastically reduces signs of lung inflammation. Together, our studies reveal that if efficiently activated, autophagy can control B. cepacia infection and ameliorate the associated inflammation. Therefore, autophagy is a novel target for new drug development for CF patients to control B. cepacia infection and accompanying inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using radioimmunoassay for mammalian tachykinins, peptides with substance P-like immunoreactivity and neurokinin A-like immunoreactivity were identified in an extract of the brain of the longnose skate, Raja rhina (elasmobranch) but only a peptide with neurokinin A-like immunoreactivity was identified in the brain of the sea lamprey, Petromyzon marinus (agnathan). The primary structure of the skate peptide with substance P-like immunoreactivity (Ala-Lys-His-Asp-Lys-Phe-Tyr-Gly-Leu-Met-NH2) shows one amino acid substitution (Phe(3) --> His) compared with scyliorhinin I, previously isolated from dogfish brain and gut. The skate neurokinin A-related peptide (His-Lys-Leu-Gly-Ser-Phe-Val-Gly-Leu-Met-NH2) shows tow substitutions (Thr(3) --> Leu and Asp(4) --> Gly) compared with mammalian neurokinin A. Although the COOH-terminus of the lamprey tackhykinin (Arg-Lys-Pro-His-Pro-Lys-Gly-phe-Val-Gly-Leu-Met-NH2) resembles neurokinin A, the presence of the strongly conserved Lys/Arg-Pro-Xaa-Pro motif at the NH2-terminus of the peptide indicates greater structural similarity with substance P. The additional arginine residue at position 1 in the peptide suggests that the lamprey is utilizing a site of postranslational processing in the tachykinin precursor that is different from the equivalent site in mammalian and other lower vertebrate preprotachykinin(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two peptides with substance-P-like immunoreactivity were isolated in pure form from an extract of the brain of the elasmobranch fish, Scyliorhinus canicula (european common dogfish). One peptide was identical to scyliorhinin I, previously identified in dogfish intestine, and the second was the undecapeptide Lys-Pro-Arg-Pro-Gly-Gln-Phe-Phe-Gly-Leu-Met-CONH2 which is structurally similar to mammalian substance P Scyliorhinin II or a peptide analogous to mammalian neurokinin A were not detected in the extract. Synthetic dogfish substance P ([Lys1, Arg3, Gly5]substance P) was approximately threefold more potent than mammalian substance P (K(d) = 0.21 +/- 0.11 nM versus K(d)= 0.74 +/- 0.17 nM; mean +/- SD; n = 6) in inhibiting the binding of I-125-labelled substance P to neurokinin (NK1) receptors in rat submandibular gland membranes. The vasodilator action of tachykinins in mammals is mediated primarily through interaction with NK1 receptors. Bolus intravenous injections of [Lys1, Arg3, Gly5]substance P (100 pmol) and scyliorhinin I (100 pmol) produced appreciable (>4 kPa) decreases in arterial blood pressure in the rat whereas intravenous injections of up to 5 nmol of the peptides into conscious, unrestrained dogfish produced no change in arterial blood pressure, pulse amplitude or heart rate. Injections of greater amounts of the peptides (10-50 nmol) produced a slight increase (400-667 Pa) in blood pressure. The data indicate that mammalian-type NK1 tachykinin receptors are not involved in cardiovascular regulation in elasmobranch fish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When permitted access to the appropriate forms of rehabilitation, many severely affected stroke survivors demonstrate a capacity for upper limb functional recovery well in excess of that formerly considered possible. Yet, the mechanisms through which improvements in arm function occur in such profoundly impaired individuals remain poorly understood. An exploratory study was undertaken to investigate the capacity for brain plasticity and functional adaptation, in response to 12-h training of reaching using the SMART Arm device, in a group of severely affected stroke survivors with chronic upper limb paresis. Twenty-eight stroke survivors were enroled. Eleven healthy adults provided normative data. To assess the integrity of ipsilateral and contralateral corticospinal pathways, transcranial magnetic stimulation was applied to evoke responses in triceps brachii during an elbow extension task. When present, contralateral motor-evoked potentials (MEPs) were delayed and reduced in amplitude compared to those obtained in healthy adults. Following training, contralateral responses were more prevalent and their average onset latency was reduced. There were no reliable changes in ipsilateral MEPs. Stroke survivors who exhibited contralateral MEPs prior to training achieved higher levels of arm function and exhibited greater improvements in performance than those who did not initially exhibit contralateral responses. Furthermore, decreases in the onset latency of contralateral MEPs were positively related to improvements in arm function. Our findings demonstrate that when severely impaired stroke survivors are provided with an appropriate rehabilitation modality, modifications of corticospinal reactivity occur in association with sustained improvements in upper limb function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several populations of interstitial cells of Cajal (ICC) exist in the bladder, associated with intramural nerves. Although ICC respond to exogenous agonists, there is currently no evidence of their functional innervation. The objective was to determine whether bladder ICC are functionally innervated. Guinea-pig bladder tissues, loaded with fluo-4AM were imaged with fluorescent microscopy and challenged with neurogenic electrical field stimulation (EFS). All subtypes of ICC and smooth muscle cells (SMC) displayed spontaneous Ca2+-oscillations. EFS (0.5Hz, 2Hz, 10Hz) evoked tetrodotoxin (1µM)-sensitive Ca2+-transients in lamina propria ICC (ICC-LP), detrusor ICC and perivascular ICC (PICC) associated with mucosal microvessels. EFS responses in ICC-LP were significantly reduced by atropine or suramin. SMC and vascular SMC (VSM) also responded to EFS. Spontaneous Ca2+-oscillations in individual ICC-LP within networks occurred asynchronously whereas EFS evoked coordinated Ca2+-transients in all ICC-LP within a field of view. Non-correlated Ca2+-oscillations in detrusor ICC and adjacent SMC pre-EFS, contrasted with simultaneous neurogenic Ca2+ transients evoked by EFS. Spontaneous Ca2+-oscillations in PICC were little affected by EFS, whereas large Ca2+-transients were evoked in pre-EFS quiescent PICC. EFS also increased the frequency of VSM Ca2+-oscillations. In conclusion, ICC-LP, detrusor ICC and PICC are functionally innervated. Interestingly, Ca2+-activity within ICC-LP networks and between detrusor ICC and their adjacent SMC were synchronous under neural control. VSM and PICC Ca2+-activity was regulated by bladder nerves. These novel findings demonstrate functional neural control of bladder ICC. Similar studies should now be carried out on neurogenic bladder to elucidate the contribution of impaired nerve-ICC communication to bladder pathophysiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Very-low-birthweight (VLBW) individuals are at high risk of brain injury in the perinatal period. We wished to determine how such early brain lesions affect brain structure in adulthood. Thirty-two VLBW adults (20 female, 12 male) and, 18 term, normal birthweight sibling control individuals (nine female, nine male) underwent structural MRI at a mean age of 23 years 4 months (range 17 to 33 years; SD 3.4). Images were analyzed using an automated tissue segmentation algorithm in order to estimate whole brain tissue class volumes in native space. Images were then warped to a template image in standard space. There was no significant between-group difference in whole brain, greymatter, white matter, or total cerebral spinal fluid (CSF) volumes. However, lateral ventricular volume was significantly increased by 41% in those with VLBW. The ratio of grey to white matter was also significantly increased (by 10%) in those with VLBW. Group comparison maps showed widespread changes in the distribution of grey and white matter, and relative excess of ventricular CSF, in the brains of VLBW individuals. Increased ventricular volume predicted decreased grey matter in subcortical nuclei and limbic cortical structures, and decreased periventricular white matter. We conclude that these diffuse abnormalities of grey and white matter are a consequence,of the interaction of perinatal brain injury and ongoing neurodevelopmental processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Many studies have separately reported abnormalities of frontal and temporal lobe structures in schizophrenia, but little is known of structural fronto-temporal associations in this condition. We investigated whether male patients with chronic schizophrenia would show abnormal patterns of correlation between regional brain volumes.

Methods. Structural magnetic resonance images of the brain in 42 patients were compared with 43 matched unaffected controls. We explored the pattern of association between regional brain volumes by correlational analyses, and non-parametrically tested for significance of between-group differences by randomization.

Results. The schizophrenics demonstrated significant volume deficits in several brain regions (left temporal lobe and hippocampus, right dorsolateral prefrontal cortex), and significant volume increases in the ventricular system (third ventricle and left temporal horn of the lateral ventricle). Controls demonstrated large positive correlations (r > 0.4) between prefrontal and temporal lobe regions. By contrast, inter-regional correlations significantly reduced in schizophrenics included those between prefrontal, anterior cingulate and temporal regions, and between posterior cingulate and hippocampus (P < 0.05). The most salient abnormality in patients was a dissociation between prefrontal and superior temporal gyrus volumes (P < 0.01).

Conclusions. These results support the existence of a relative 'fronto-temporal dissociation' in schizophrenia which we suggest may be due to lack of mutually trophic influences during frontal and temporal lobe development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuropsychological outcome at 14 to 15 years of age of a cohort of 75 participants (39 male, 36 female) born at <33 weeks' gestation was investigated. Research was conducted parallel to a recent MRI study by Stewart and colleagues which reported that 55% of this cohort had evidence of brain abnormality. One aim of the studs was to compare neuropsychological function in those very preterm children with and without MRI abnormality. Compared to a control sample of term adolescents, very preterm participants had impairment only on a measure of word production. On measures of attention, memory, perceptual skill, and visuomotor and executive function, the adolescents born very preterm performed in the normal range, whether or not they had evidence of MRI abnormality. Our findings are encouraging as the neuropsychological consequences of damage to the very preterm brain, still evident on MRI at 14 to 15 years of age, appear to be minor.