523 resultados para ionic transports
Resumo:
This paper compares the structure of 1-alkyl-3-methylim ridazolium salts using SAXS and X-ray reflectivity. A range of anions have been investigated namely chloride, bromide, trifluoromethanesulfonate (OTf), bis(trifluoromethanesulfonyl)imide (TFI) and tetrachloropalladate(II) with cation alkyl chains ranging from n = 12-20. In general, the salts show liquid crystalline behaviour whose structure is still observed on melting into an isotropic liquid.
Resumo:
Atomic absorption spectroscopy of the ionic liquid 1-ethyl-3-methylimidazolium ethanoate ([emim](2)[O2CMe]), prepared according to International Patent WO 96/18459, showed it to contain large amounts of lead impurity: (ca. 0.5 M): [emim](2)[Pb(O2CMe)(4)] was isolated and shown crystallographically to contain the first known example of a monomeric, homoleptic pentacoordinate lead(ii) carboxylate complex, with a stereochemically active lone-pair.
Resumo:
Ionic liquid crystals were obtained by coupling one or two mesogenic units (cholesterol or cyanobiphenyl) to an imidazolium cation. Anions are bromide, bis(trifluoromethylsulfonyl)imide, and tetrakis(2-thenoyltrifluoroacetonato)europate(III). The mesomorphism of the compounds depends on the type and number of mesogenic units and on the type of anion. In general, the most stable mesophases are observed for the bis(trifluoromethylsulfonyl)imide salts. Most of the compounds containing cholesterol moieties show enantiotropic SmA* phases over a broad temperature range, and some of them are room temperature liquid crystals. Modeling of the small-angle X-ray scattering patterns revealed the molecular arrangement in these mesophases. On the contrary, most of the compounds containing cyanobiphenyl groups exhibit monotropic lamellar or nematic mesophases, depending on the number of mesogenic units. The imidazolium salts containing the tetrakis(2-thenoyltrifluoroacetonato)europate(III) anion show an intense red photoluminescence.
Resumo:
The task-specific ionic liquid betainium bis(trifluoromethylsulfonyl)imide, [Hbet][Tf2N], was used to dissolve metal oxides and hydroxides. The crystal structures of the resulting metal betaine bistriflimide complexes exhibit a rich structural variety. A trimeric structure was found for the cobalt(II) compound, [Co-3(bet)(8)(Hbet)(2)(H2O)(2)][Tf2N](9)[Hbet], a tetrameric structure for the manganese(II) and zinc(II) compound, [Mn-4(bet)(10)(H2O)(4)][Tf2N](8) and [Zn-4(bet)(10)(H2O)(2)][Tf2N](8), respectively, a pentameric structure for the nickel(II) compound, [Ni-5(bet)(12)(H2O)(6)][Tf2N](10), an oxo-hydroxo-cluster formation for the lead(II) compound, [(Pb4O)Pb(OH)(bet)(8)(Tf2N)3] [Tf2N](4)center dot MeOH, and a polymeric structure for the silver(I) compound, [Ag-2(bet)(2)(Tf2N)Ag-2(bet)(2)][Tf2N](3). The zwitterionic nature of the betaine ligand and the weakly coordinating ability of the bis(trifluoromethylsulfonyl)imide [Tf2N]- anion facilitates the incorporation of metal ions into oligonuclear and polynuclear metal complexes.
Resumo:
Imidazolium, pyridinium, pyrrolidinium, piperidinium, morpholinium, and quaternary ammonium bis(trifluoromethyl-sulfonyl)imide salts were functionalized with a carboxyl group. These ionic liquids are useful for the selective dissolution of metal oxides and hydroxides. Although these hydrophobic ionic liquids are immiscible with water at room temperature, several of them form a single phase with water at elevated temperatures. Phase separation occurs upon cooling. This thermomorphic behavior has been investigated by H-1 NMR, and it was found that it can be attributed to the temperature-dependent hydration and hydrogen-bond formation of the ionic liquid components. The crystal structures of four ionic liquids and five metal complexes have been determined.
Resumo:
The electrical conductivities of 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids and of 1-hexyl-3-methylimidazolium ionic liquids with different anions were determined in the temperature range between 123 and 393 K on the basis of dielectric measurements in the frequency range from 1 to 10(7) Hz. Most of the ionic liquids form a glass and the conductivity values obey the Vogel-Fulcher-Tammann equation. The glass transition temperatures are increasing with increasing length of the alkyl chain. The fragility is weakly dependent on the alkyl chain length but is highly sensitive to the structure of the anion. (c) 2008 American Institute of Physics.
Resumo:
For the first time, zinc oxide nanoparticles have been synthesized by the sonochemical method in an ionic liquid, 1-hexyl-3-methylimidazolium his (trifluoromethylsulfonyl) imide, liquid [hmim][NTf2] as a solvent. The morphology and structure of ZnO nanoparticles have been characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). A possible mechanism is proposed to explain the formation of ZnO nanostructures. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Nanoparticles of ZnO with the wurtzite structure have been successfully synthesized via a microwave through the decomposition of zinc acetate dihydrate in an ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, as a solvent. Fundamental characterizations including X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were conducted for the ZnO nanostructures.
Resumo:
Neural network models have been explored for the prediction of the liquid-liquid equilibrium data and aromatic/aliphatic selectivity values. Four ternary systems composed of toluene, heptane, and the ionic liquids 1-ethyl-3-methylimidazolium ethylsulfate, or 1,3-dimethylimidazolium methylsulfate were investigated at 313.2 and 348.2 K.
Resumo:
Ionic liquid literature is increasingly plagued by unfounded mythologies that have arisen due to the burgeoning interest in these neoteric materials. This short polemic is designed to bring attention to some of the key problems in the current ionic liquid literature; this is an exciting new field, and we want to see it blossom in the fertile ground of academic and industrial excellence.
Resumo:
We report here the syntheses, characterisation and electrochemistry of some 1-ethyl-3-methylimidazolium, [emim], uranium halide salts. The electrochemistry of the uranium halide salts were investigated in both basic and acidic haloaluminate ionic liquids (ILs). The solid state structures of the uranium chloride salts have previously been reported, but have now been re-evaluted using a new statistical model to determine the presence or absence of weak hydrogen bonding interactions in the crystalline state.
Resumo:
At present, optical microscopy studies of minerals, especially diamonds, are hampered by the lack of available high refractive index (> 1.8) immersion fluids. We report here the syntheses and refractive indices of some 1-alkyl-3-methylimidazolium based ionic liquids containing polyhalide anions, which exhibit refractive indices between 1.6 and 2.23, and thus significantly extend the range of minerals which can be studied.
Resumo:
We report here the improved syntheses of 1-alkyl-3-methylimidazolium ionic liquids. Microwave irradiation drastically reduces the preparation time of 1-alkyl-3-methylimidazolium and N-alkylpyridinium halide salts and, in addition, three halide-free routes to ionic liquids have been developed. New, chiral, imidazolium-based ionic liquids were prepared using both conventional and halide-free procedures. Chirality was introduced in the new compounds at either the cation or the anion, or both.
Resumo:
Controlled, multimode microwave irradiation has been employed in a generic solvent-free process to prepare a wide range of ionic liquids based on nitrogen-containing heterocycles. The developed method offers a flexible, small to large-scale approach to prepare ionic liquids, in either sealed or open vessels, in a faster and greener process than any previously described.