146 resultados para hot season
Resumo:
Glazed Double Skin Facades (DSF) offer the potential to improve the performance of all-glass building skins, common to commercial office buildings in which full facade glazing has almost become the standard. Single skin glazing results in increased heating and cooling costs over opaque walls, due to lower thermal resistance of glass, and the increased impact of solar gain through it. However, the performance benefit of DSF technology continues to be questioned and its operation poorly understood, particularly the nature of airflow through the cavity. This paper deals specifically with the experimental analysis of the air flow characteristics in an automated double skin façade. The benefit of the DSF as a thermal buffer, and to limit overheating is evaluated through analysis of an extensive set of parameters including air and surface temperatures at each level in the DSF, airflow readings in the cavity and at the inlet and outlet, solar and wind data, and analytically derived pressure differentials. The temperature and air-flow are monitored in the cavity of a DSF using wireless sensors and hot wire anemometers respectively. Automated louvre operation and building set-points are monitored via the BMS. Thermal stratification and air flow variation during changing weather conditions are shown to effect the performance of the DSF considerably and hence the energy performance of the building. The relative pressure effects due to buoyancy and wind are analysed and quantified. This research aims to developed and validate models of DSFs in the maritime climate, using multi-season data from experimental monitoring. This extensive experimental study provides data for training and validation of models.
Resumo:
Radiative pressure exerted by line interactions is a prominent driver of outflows in astrophysical systems, being at work in the outflows emerging from hot stars or from the accretion discs of cataclysmic variables, massive young stars and active galactic nuclei. In this work, a new radiation hydrodynamical approach to model line-driven hot-star winds is presented. By coupling a Monte Carlo radiative transfer scheme with a finite volume fluid dynamical method, line-driven mass outflows may be modelled self-consistently, benefiting from the advantages of Monte Carlo techniques in treating multiline effects, such as multiple scatterings, and in dealing with arbitrary multidimensional configurations. In this work, we introduce our approach in detail by highlighting the key numerical techniques and verifying their operation in a number of simplified applications, specifically in a series of self-consistent, one-dimensional, Sobolev-type, hot-star wind calculations. The utility and accuracy of our approach are demonstrated by comparing the obtained results with the predictions of various formulations of the so-called CAK theory and by confronting the calculations with modern sophisticated techniques of predicting the wind structure. Using these calculations, we also point out some useful diagnostic capabilities our approach provides. Finally, we discuss some of the current limitations of our method, some possible extensions and potential future applications.
Resumo:
Context. The magnetic activity of planet-hosting stars is an importantfactor for estimating the atmospheric stability of close-in exoplanetsand the age of their host stars. It has long been speculated thatclose-in exoplanets can influence the stellar activity level. However,testing for tidal or magnetic interaction effects in samples ofplanet-hosting stars is difficult because stellar activity hindersexoplanet detection, so that stellar samples with detected exoplanetsshow a bias toward low activity for small exoplanets.
Aims: Weaim to test whether exoplanets in close orbits influence the stellarrotation and magnetic activity of their host stars.
Methods: Wedeveloped a novel approach to test for systematic activity-enhancementsin planet-hosting stars. We use wide (several 100 AU) binary systems inwhich one of the stellar components is known to have an exoplanet, whilethe second stellar component does not have a detected planet andtherefore acts as a negative control. We use the stellar coronal X-rayemission as an observational proxy for magnetic activity and analyzeobservations performed with Chandra and XMM-Newton.
Results: Wefind that in two systems for which strong tidal interaction can beexpected the planet-hosting primary displays a much higher magneticactivity level than the planet-free secondary. In three systems forwhich weaker tidal interaction can be expected the activity levels ofthe two stellar components agree with each other.
Conclusions:Our observations indicate that the presence of Hot Jupiters may inhibitthe spin-down of host stars with thick outer convective layers. Possiblecauses for this effect include a transfer of angular momentum from theplanetary orbit to the stellar rotation through tidal interaction, ordifferences during the early evolution of the system, where the hoststar may decouple from the protoplanetary disk early because of a gapopened by the forming Hot Jupiter.
Resumo:
We present new X-ray observations obtained with Chandra ACIS-S of the HD 189733 system, consisting of a K-type star orbited by a transiting Hot Jupiter and an M-type stellar companion. We report a detection of the planetary transit in soft X-rays with a significantly deeper transit depth than observed in the optical. The X-ray data favor a transit depth of 6%-8%, versus a broadband optical transit depth of 2.41%. While we are able to exclude several possible stellar origins for this deep transit, additional observations will be necessary to fully exclude the possibility that coronal inhomogeneities influence the result. From the available data, we interpret the deep X-ray transit to be caused by a thin outer planetary atmosphere which is transparent at optical wavelengths, but dense enough to be opaque to X-rays. The X-ray radius appears to be larger than the radius observed at far-UV wavelengths, most likely due to high temperatures in the outer atmosphere at which hydrogen is mostly ionized. We furthermore detect the stellar companion HD 189733B in X-rays for the first time with an X-ray luminosity of log LX = 26.67 erg s-1. We show that the magnetic activity level of the companion is at odds with the activity level observed for the planet-hosting primary. The discrepancy may be caused by tidal interaction between the Hot Jupiter and its host star.