158 resultados para Ultraviolet adsorptions


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zinc oxide is synthesised at low temperature (80A degrees C) in nanosheet geometry using a substrate-free, single-step, wet-chemical method and is found to act as a blue-white fluorophore. Investigation by atomic force microscopy, electron microscopy, and X-ray diffraction confirms zinc oxide material of nanosheet morphology where the individual nanosheets are polycrystalline in nature with the crystalline structure being of wurtzite character. Raman spectroscopy indicates the presence of various defects, while photoluminescence measurements show intense green (centre wavelength approximately 515 nm) blue (approximately 450 nm), and less dominant red (approximately 640 nm) emissions due to a variety of vacancy and interstitial defects, mostly associated with surfaces or grain boundaries. The resulting colour coordinate on the CIE-1931 standard is (0.23, 0.33), demonstrating potential for use as a blue-white fluorescent coating in conjunction with ultraviolet emitting LEDs. Although the defects are often treated as draw-backs of ZnO, here we demonstrate useful broadband visible fluorescence properties in as-prepared ZnO. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photoresponse of n-type indium-doped ZnO and a p-type polymer (PEDOT:PSS) heterojunction devices are studied, juxtaposed with the photoluminescence of the In-ZnO samples. In addition to the expected photoresponse in the ultraviolet, the heterojunctions exhibit significant photoresponse to the visible (532 nm). However, neither the doped ZnO nor PEDOT: PSS individually show any photoresponse to visible light. The sub-bandgap photoresponse of the heterojunction originates from visible photon mediated e-h generation between the In-ZnO valence band and localized states lying within the band gap. Though increased doping of In-ZnO has limited effect on the photoluminescence, it significantly diminishes the photoresponse. The study indicates that optimally doped devices are promising for the detection of wavelengths in selected windows in the visible. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4704655]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extreme ultraviolet (XUV) and X-ray harmonic spectra produced by intense laser-solid interactions have, so far, been consistent with Doppler upshifted reflection from collective relativistic plasma oscillations-the relativistically oscillating mirror mechanism(1-6). Recent theoretical work, however, has identified a new interaction regime in which dense electron nanobunches are formed at the plasma-vacuum boundary resulting in coherent XUV radiation by coherent synchrotron emission(7,8) (CSE). Our experiments enable the isolation of CSE from competing processes, demonstrating that electron nanobunch formation does indeed occur. We observe spectra with the characteristic spectral signature of CSE-a slow decay of intensity, I, with high-harmonic order, n, as I(n) proportional to n(-1.62) before a rapid efficiency rollover. Particle-in-cell code simulations reveal how dense nanobunches of electrons are periodically formed and accelerated during normal-incidence interactions with ultrathin foils and result in CSE in the transmitted direction. This observation of CSE presents a route to high-energy XUV pulses(7,8) and offers a new window on understanding ultrafast energy coupling during intense laser-solid density interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

XPS, HREELS, ARUPS and Delta phi data show that furan chemisorbs non-dissociatively on Pd{111} at 175 K, the molecular plane being significantly tilted with respect to the surface normal. Bonding involves both the oxygen lone pair and significant a interaction with the substrate. The degree of decomposition that accompanies molecular desorption is a strong function of coverage: similar to 40% of the adsorbate desorbs molecularly from the saturated monolayer. Decomposition occurs via decarbonylation to yield COa and H-a followed by desorption rate limited loss of H-2 and CO. It seems probable that an adsorbed C3H3 species formed during this process undergoes subsequent stepwise dehydrogenation ultimately yielding H-2 and C-a.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Beam divergences of high-order extreme ultraviolet harmonics from intense laser interactions with steep plasma density gradients are studied through experiment and Fourier analysis of the harmonic spatial phase. We show that while emission due to the relativistically oscillating mirror mechanism can be explained by ponderomotive surface denting, in agreement with previous results, the divergence of the emission due to the coherent wake emission mechanism requires a combination of the dent phase and an intrinsic emission phase. The temporal dependence of the divergences for both mechanisms is highlighted while it is also shown that the coherent wake emission divergence can be small in circumstances where the phase terms compensate each other. © 2013 American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To investigate the contribution of glycation and oxidation reactions to the modification of insoluble collagen in aging and diabetes, Maillard reaction products were measured in skin collagen from 39 type 1 diabetic patients and 52 nondiabetic control subjects. Compounds studied included fructoselysine (FL), the initial glycation product, and the glycoxidation products, N epsilon-(carboxymethyl) lysine (CML) and pentosidine, formed during later Maillard reactions. Collagen-linked fluorescence was also studied. In nondiabetic subjects, glycation of collagen (FL content) increased only 33% between 20 and 85 yr of age. In contrast, CML, pentosidine and fluorescence increased five-fold, correlating strongly with age. In diabetic patients, collagen FL was increased threefold compared with nondiabetic subjects, correlating strongly with glycated hemoglobin but not with age. Collagen CML, pentosidine and fluorescence were increased up to twofold in diabetic compared with control patients: this could be explained by the increase in glycation alone, without invoking increased oxidative stress. There were strong correlations among CML, pentosidine and fluorescence in both groups, providing evidence for age-dependent chemical modification of collagen via the Maillard reaction, and acceleration of this process in diabetes. These results support the description of diabetes as a disease characterized by accelerated chemical aging of long-lived tissue proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the first direct measurement of ultrafast charge migration in a biomolecular building block the amino acid phenylalanine. Using an extreme ultraviolet pulse of 1.5 fs duration to ionize molecules isolated in the gas phase, the location of the resulting hole was probed by a 6 fs visible/near-infrared pulse. By measuring the yield of a doubly charged ion as a function of the delay between the two pulses, the positive hole was observed to migrate to one end of the cation within 30 fs. This process is likely to originate from even faster coherent charge oscillations in the molecule being dephased by bond stretching which eventually localizes the final position of the charge. This demonstration offers a clear template for observing and controlling this phenomenon in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Absolute photodetachment cross sections of two anions of astrophysical importance CN- and C3N- were measured to be (1.18 +- (0.03)_stat (0.17)_sys) * 10^-17 cm^2 and (1.43 +- (0.14)_stat (0.37)_sys) * 10^-17 cm^2 respectively at the ultraviolet wavelength of 266 nm (4.66 eV). These relatively large values of the cross sections imply that photodetachment can play a major role in the destruction mechanisms of these anions particularly in photon-dominated regions. We have therefore carried out model calculations using the newly measured cross sections to investigate the abundance of these molecular anions in the cirumstellar envelope of the carbon-rich star IRC+10216. The model predicts the relative importance of the various mechanisms of formation and destruction of these species in different regions of the envelope. UV photodetachment was found to be the major destruction mechanism for both CN- and C3N- anions in those regions of the envelope, where they occur in peak abundance. It was also found that photodetachment plays a crucial role in the degradation of these anions throughout the circumstellar envelope.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We cross match the GALEX and Kepler surveys to create a unique dataset with both ultraviolet (UV) measurements and highly precise photometric variability measurements in the visible light spectrum. As stellar activity is driven by magnetic field modulations, we have used UV emission from the magnetically heated gas in the stellar atmosphere to serve as our proxy for the more well-known stellar activity indicator, R' HK . The R' HK approximations were in turn used to estimate the level of astrophysical noise expected in radial velocity (RV) measurements and these were then searched for correlations with photometric variability. We find significant scatter in our attempts to estimate RV noise for magnetically active stars, which we attribute to variations in the phase and strength of the stellar magnetic cycle that drives the activity of these targets. However, for stars we deem to be magnetically quiet, we do find a clear correlation between photometric variability and estimated levels of RV noise (with variability up to ~10 m s–1). We conclude that for these quiet stars, we can use photometric measurements as a proxy to estimate the RV noise expected. As a result, the procedure outlined in this paper may help select targets best-suited for RV follow-up necessary for planet confirmation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasma-induced non-equilibrium liquid chemistry is used to synthesize gold nanoparticles (AuNPs) without using any reducing or capping agents. The morphology and optical properties of the synthesized AuNPs are characterized by transmission electron microscopy (TEM) and ultraviolet-visible spectroscopy. Plasma processing parameters affect the particle shape and size and the rate of the AuNP synthesis process. Particles of different shapes (e. g. spherical, triangular, hexagonal, pentagonal, etc) are synthesized in aqueous solutions. In particular, the size of the AuNPs can be tuned from 5 nm to several hundred nanometres by varying the initial gold precursor (HAuCl4) concentration from 2.5 mu M to 1 mM. In order to reveal details of the basic plasma-liquid interactions that lead to AuNP synthesis, we have measured the solution pH, conductivity and hydrogen peroxide (H2O2) concentration of the liquid after plasma processing, and conclude that H2O2 plays the role of the reducing agent which converts Au+3 ions to Au-0 atoms, leading to nucleation growth of the AuNPs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. The VLT-FLAMES Tarantula Survey has an extensive view of the copious number of massive stars in the 30 Doradus (30 Dor) star forming region of the Large Magellanic Cloud. These stars play a crucial role in our understanding of the stellar feedback in more distant, unresolved star forming regions. Aims. The first comprehensive census of hot luminous stars in 30 Dor is compiled within a 10 arcmin (150 pc) radius of its central cluster, R136. We investigate the stellar content and spectroscopic completeness of the early type stars. Estimates were made for both the integrated ionising luminosity and stellar wind luminosity. These values were used to re-assess the star formation rate (SFR) of the region and determine the ionising photon escape fraction. Methods. Stars were selected photometrically and combined with the latest spectral classifications. Spectral types were estimated for stars lacking spectroscopy and corrections were made for binary systems, where possible. Stellar calibrations were applied to obtain their physical parameters and wind properties. Their integrated properties were then compared to global observations from ultraviolet (UV) to far-infrared (FIR) imaging as well as the population synthesis code, Starburst99. Results. Our census identified 1145 candidate hot luminous stars within 150 pc of R136 of which >700 were considered to be genuine early type stars and contribute to feedback. We assess the survey to be spectroscopically complete to 85% in the outer regions (>5 pc) but only 35% complete in the region of the R136 cluster, giving a total of 500 hot luminous stars in the census which had spectroscopy. Only 31 were found to be Wolf-Rayet (W-R) or Of/WN stars, but their contribution to the integrated ionising luminosity and wind luminosity was ~ 40% and ~ 50%, respectively. Similarly, stars with M > 100 M (mostly H-rich WN stars) also showed high contributions to the global feedback, ~ 25% in both cases. Such massive stars are not accounted for by the current Starburst99 code, which was found to underestimate the integrated ionising luminosity of R136 by a factor ~ 2 and the wind luminosity by a factor ~ 9. The census inferred a SFR for 30 Dor of 0.073 ± 0.04 M yr . This was generally higher than that obtained from some popular SFR calibrations but still showed good consistency with the far-UV luminosity tracer as well as the combined Hα and mid-infrared tracer, but only after correcting for Hα extinction. The global ionising output was also found to exceed that measured from the associated gas and dust, suggesting that ~6 % of the ionising photons escape the region. Conclusions. When studying the most luminous star forming regions, it is essential to include their most massive stars if one is to determine a reliable energy budget. Photon leakage becomes more likely after including their large contributions to the ionising output. If 30 Dor is typical of other massive star forming regions, estimates of the SFR will be underpredicted if this escape fraction is not accounted for.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present ultraviolet, optical, near-infrared photometry and spectroscopy of SN 2009N in NGC 4487. This object is a Type II-P supernova with spectra resembling those of subluminous II-P supernovae, while its bolometric luminosity is similar to that of the intermediate-luminosity SN 2008in. We created SYNOW models of the plateau phase spectra for line identification and to measure the expansion velocity. In the near-infrared spectra we find signs indicating possible weak interaction between the supernova ejecta and the pre-existing circumstellar material. These signs are also present in the previously unpublished near-infrared spectra of SN 2008in. The distance to SN 2009N is determined via the expanding photosphere method and the standard candle method as D = 21.6 ± 1.1 Mpc. The produced nickel-mass is estimated to be ∼0.020 ± 0.004 M⊙. We infer the physical properties of the progenitor at the explosion through hydrodynamical modelling of the observables. We find the values of the total energy as ∼0.48 × 1051 erg, the ejected mass as ∼11.5 M⊙, and the initial radius as ∼287 R⊙.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Approximately 20 per cent of quasi-stellar objects (QSOs) exhibit broad, blue-shifted absorption lines in their ultraviolet spectra. Such features provide clear evidence for significant outflows from these systems, most likely in the form of accretion disc winds. These winds may represent the ‘quasar’ mode of feedback that is often invoked in galaxy formation/evolution models, and they are also key to unification scenarios for active galactic nuclei (AGN) and QSOs. To test these ideas, we construct a simple benchmark model of an equatorial, biconical accretion disc wind in a QSO and use a Monte Carlo ionization/radiative transfer code to calculate the ultraviolet spectra as a function of viewing angle. We find that for plausible outflow parameters, sightlines looking directly into the wind cone do produce broad, blue-shifted absorption features in the transitions typically seen in broad absorption line (BAL) QSOs. However, our benchmark model is intrinsically X-ray weak in order to prevent overionization of the outflow, and the wind does not yet produce collisionally excited line emission at the level observed in non-BAL QSOs. As a first step towards addressing these shortcomings, we discuss the sensitivity of our results to changes in the assumed X-ray luminosity and mass-loss rate, Ṁwind. In the context of our adopted geometry, Ṁwind ∼ Ṁacc is required in order to produce significant BAL features. The kinetic luminosity and momentum carried by such outflows would be sufficient to provide significant feedback.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present Maxwellian-averaged effective collision strengths for the electron-impact excitation of S III over a wide range of electron temperatures of astrophysical importance, log Te (K) = 3.0-6.0. The calculation incorporates 53 fine-structure levels arising from the six configurations—3s 23p 2, 3s3p 3, 3s 23p3d, 3s 23p4s, 3s 23p4p, and 3s 23p4d—giving rise to 1378 individual lines and is undertaken using the recently developed RMATRX II plus FINE95 suite of codes. A detailed comparison is made with a previous R-matrix calculation and significant differences are found for some transitions. The atomic data are subsequently incorporated into the modeling code CLOUDY to generate line intensities for a range of plasma parameters, with emphasis on allowed ultraviolet extreme-ultraviolet emission lines detected from the Io plasma torus. Electron density-sensitive line ratios are calculated with the present atomic data and compared with those from CHIANTI v7.1, as well as with Io plasma torus spectra obtained by Far-Ultraviolet Spectroscopic Explorer and Extreme-Ultraviolet Explorer. The present line intensities are found to agree well with the observational results and provide a noticeable improvement on the values predicted by CHIANTI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SN 2004et is one of the nearest and best-observed Type IIP supernovae, with a progenitor detection as well as good photometric and spectroscopic observational coverage well into the nebular phase. Based on nucleosynthesis from stellar evolution/explosion models we apply spectral modeling to analyze its 140-700 day evolution from ultraviolet to mid-infrared. We find a M_ZAMS= 15 Msun progenitor star (with an oxygen mass of 0.8 Msun) to satisfactorily reproduce [O I] 6300, 6364 {\AA} and other emission lines of carbon, sodium, magnesium, and silicon, while 12 Msun and 19 Msun models under- and overproduce most of these lines, respectively. This result is in fair agreement with the mass derived from the progenitor detection, but in disagreement with hydrodynamical modeling of the early-time light curve. From modeling of the mid-infrared iron-group emission lines, we determine the density of the "Ni-bubble" to rho(t) = 7E-14*(t/100d)^-3 g cm^-3, corresponding to a filling factor of f = 0.15 in the metal core region (V = 1800 km/s). We also confirm that silicate dust, CO, and SiO emission are all present in the spectra.