145 resultados para Spectrophotometry, Atomic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Virtual Atomic and Molecular Data Centre (VAMDC) Consortium is a worldwide consortium which federates atomic and molecular databases through an e-science infrastructure and an organisation to support this activity. About 90% of the inter-connected databases handle data that are used for the interpretation of astronomical spectra and for modelling in many fields of astrophysics. Recently the VAMDC Consortium has connected databases from the radiation damage and the plasma communities, as well as promoting the publication of data from Indian institutes. This paper describes how the VAMDC Consortium is organised for the optimal distribution of atomic and molecular data for scientific research. It is noted that the VAMDC Consortium strongly advocates that authors of research papers using data cite the original experimental and theoretical papers as well as the relevant databases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Petaflop architectures are currently being utilized efficiently to perform large scale computations in Atomic, Molecular and Optical Collisions. We solve the Schr\"odinger or Dirac equation for the appropriate collision problem using the R-matrix or R-matrix with pseudo-states approach. We briefly outline the parallel methodology used and implemented for the current suite of Breit-Pauli and DARC codes. In this report, various examples are shown from our theoretical results compared with experimental results obtained from Synchrotron Radiation facilities where the Cray architecture at HLRS is playing an integral part in our computational projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New scaled carbon atomic electron-impact excitation data is utilized to evaluate comparisons between experimental measurements and fluid emission modeling of detached plasmas at DIII-D. The C I and C II modeled emission lines for 909.8 and 514.7 nm were overestimated by a factor of 10-20 than observed experimentally for the inner leg, while the outer leg was within a factor of 2. Due to higher modeled emissions, a previous study using the UEDGE code predicted that a higher amount of carbon was required to achieve a detached outboard divertor plasma in L-mode at DIII-D. The line emission predicted by using the new scaled carbon data yields closer results when compared against experiment. We also compare modeling and measurements of Dα emission from neutral deuterium against predictions from newly calculated R-Matrix with pseudostates data available at the ADAS database. © 2013 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evaluating the ratio of selected helium lines allows for measurement of electron densities and temperatures. This technique is applied for L-mode plasmas at TEXTOR (O. Schmitz et al., Plasma Phys. Control. Fusion 50 (2008) 115004). We report our first efforts to extend it to H-mode plasma diagnostics in DIII-D. This technique depends on the accuracy of the atomic data used in the collisional radiative model (CRM). We present predictions for the electron temperatures and densities by using recently calculated R-Matrix With Pseudostates (RMPS) and Convergent Close-Coupling (CCC) electron-impact excitation and ionization data. We include contributions from higher Rydberg states by means of the projection matrix. These effects become significant for high electron density conditions, which are typical in H-mode. We apply a non-equilibrium model for the time propagation of the ionization balance to predict line emission profiles from experimental H-mode data from DIII-D. © 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the focus of ITER on the transport and emission properties of tungsten, generating atomic data for complex species has received much interest. Focusing on impurity influx diagnostics, we discuss recent work on heavy species. Perturbative approaches do not work well for near neutral systems so non-perturbative data are required, presenting a particular challenge for these influx diagnostics. Recent results on Mo+ are given as an illustration of how the diagnostic applications can guide the theoretical calculations for such systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron-impact ionization and recombination cross sections and rate coefficients are calculated for M-shell Ar atomic ions using a configuration-average distorted-wave method. The electron-impact ionization calcula- tions are for all atomic ions in the Ar isonuclear sequence. Ionization contributions include both direct ioniza- tion and excitation-autoionization processes. Good agreement is found between theory and experimental crossed-beam measurements for moderately charged ion stages. Comparisons are made with previous theoret- ical calculations where possible.We also generate rate coefficients for neutral argon ionization, based on recent R-matrix with pseudostates calculations. Electron-impact dielectronic recombination is calculated for all M-shell ions of argon. For Ar6+ and Ar7+ the current theoretical results agree well with previous level-resolved distorted-wave calculations. In order to compare with published ionization balance results our dielectronic recombination data are combined with literature values for the higher ion stages and with recent radiative recombination data for all the ion stages. We find significant differences in our equilibrium fractional abun- dances for the M-shell ions, compared with literature values. We relate these differences to the underlying atomic data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trends and focii of interest in atomic modelling and data are identified in connection with recent observations and experiments in fusion and astrophysics. In the fusion domain, spectral observations are included of core, beam penetrated and divertor plasma. The helium beam experiments at JET and the studies with very heavy species at ASDEX and JET are noted. In the astrophysics domain, illustrations are given from the SOHO and CHANDRA spacecraft which span from the solar upper atmosphere, through soft x-rays from comets to supernovae remnants. It is shown that non-Maxwellian, dynamic and possibly optically thick regimes must be considered. The generalized collisional-radiative model properly describes the collisional regime of most astrophysical and laboratory fusion plasmas and yields self-consistent derived data for spectral emission, power balance and ionization state studies. The tuning of this method to routine analysis of the spectral observations is described. A forward look is taken as to how such atomic modelling, and the atomic data which underpin it, ought to evolve to deal with the extended conditions and novel environments of the illustrations. It is noted that atomic physics influences most aspects of fusion and astrophysical plasma behaviour but the effectiveness of analysis depends on the quality of the bi-directional pathway from fundamental data production through atomic/plasma model development to the confrontation with experiment. The principal atomic data capability at JET, and other fusion and astrophysical laboratories, is supplied via the Atomic Data and Analysis Structure (ADAS) Project. The close ties between the various experiments and ADAS have helped in this path of communication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review the development of the time-dependent close-coupling method to study atomic and molecular few body dynamics. Applications include electron and photon collisions with atoms, molecules, and their ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we report both the calculation of atomic collision data for the electron-impact excitation of Ni II using parallel R-matrix codes and the computation of atomic transition data using the general atomic structure package CIV3.