171 resultados para Smart homes
Resumo:
Aims and objectives: The aim of this study was to explore the integration of the nurse practitioner role in Canadian nursing homes to enable its full potential to be realised for resident and family care. The objective was to determine nurse practitioners' patterns of work activities.
Background: Nurse practitioners were introduced in Canadian nursing homes a decade ago on a pilot basis. In recent years, government and nursing home sector interest in the role has grown along with the need for data to inform planning efforts.
Design: The study used a sequential mixed methods design using a national survey followed by case studies.
Methods: A national survey of nurse practitioners included demographic items and the EverCare Nurse Practitioner Role and Activity Scale. Following the survey, case studies were conducted in four nursing homes. Data were collected using individual and focus group interviews, document reviews and field notes.
Results: Twenty-three of a target population of 26 nurse practitioners responded to the survey, two-thirds of whom provided services in nursing homes with one site and the remainder in nursing homes with as many as four sites. On average, nurse practitioners performed activities in communicator, clinician, care manager/coordinator and coach/educator subscales at least three to four times per week and activities in the collaborator subscale once a week. Of the 43 activities, nurse practitioners performed daily, most were in the clinician and communicator subscales. Case study interviews involved 150 participants. Findings complemented those of the survey and identified additional leadership activities.
Conclusion: Nurse practitioners undertake a range of primary health care and advanced practice activities which they adapt to meet the unique needs of nursing homes. Relevance to clinical practice: Knowledge of work patterns enables nursing homes to implement the full range of nurse practitioner roles and activities to enhance resident and family care.
Resumo:
The next-generation smart grid will rely highly on telecommunications infrastructure for data transfer between various systems. Anywhere we have data transfer in a system is a potential security threat. When we consider the possibility of smart grid data being at the heart of our critical systems infrastructure it is imperative that we do all we can to ensure the confidentiality, availability and integrity of the data. A discussion on security itself is outside the scope of this paper, but if we assume the network to be as secure as possible we must consider what we can do to detect when that security fails, or when the attacks comes from the inside of the network. One way to do this is to setup a hacker-trap, or honeypot. A honeypot is a device or service on a network which appears legitimate, but is in-fact a trap setup to catch breech attempts. This paper identifies the different types of honeypot and describes where each may be used. The authors have setup a test honeypot system which has been live for some time. The test system has been setup to emulate a device on a utility network. The system has had many hits, which are described in detail by the authors. Finally, the authors discuss how larger-scale systems in utilities may benefit from honeypot placement.
Resumo:
The availability of electricity is fundamental to modern society. It is at the top of the list of critical infrastructures and its interruption can have severe consequences. This highly important system is now evolving to become more reliable, efficient, and clean. This evolving infrastructure has become known as the smart grid; and these future smart grid systems will rely heavily on ICT. This infrastructure will require many servers and due to the nature of the grid, many of these systems will be geographically diverse requiring communication links. At the heart of this ICT infrastructure will be security. At each level of the smart grid from smart metering right through to remote sensing and control networks, security will be a key factor for system design consideration. With an increased number of ICT systems in place the security risk also increases. In this paper the authors discuss the changing nature of security in relation to the smart grid by looking at the move from legacy systems to more modern smart grid systems. The potential planes of attack for future smart grid systems are identified, and the general anatomy of a cyber-attack is presented. The authors then introduce the various threat levels of different types of attack and the mitigation techniques that could be put in place for each. Finally, the authors' introduce a Phasor Measurement Unit (PMU) communication system (operated by the authors) that can be used as a test-bed for some of the proposed future security research.
Resumo:
This paper describes a fridge-freezer smart load model, which responds to external signals from the wholesale electricity market to support grid operations while switching the fridge-freezer on and off to maintain optimum operations for the owner. The key parameters of the model are the appliance dimensions, thermal mass, the fridge and freezer thermal time constants and the compressor power consumption. The model demonstrates that control strategies help to minimise load at times when the grid is under stress from high demand, and shift some load to a lower wholesale price or when there is excess renewable power. Three control strategies are proposed, based on peak shaving and valley filling, price signals and wind availability.
Resumo:
This study characterizes the domestic loads suitable to participate in the load participation scheme to make the power system more carbon and economically efficient by shifting the electricity demand profile towards periods when there is plentiful renewable in-feed.
A series of experiments have been performed on a common fridge-freezer, both completely empty and half full. The results presented are ambient temperature, temperature inside the fridge, temperature inside the drawer of the fridge, temperature inside the freezer, thermal time constants, power consumption and electric energy consumed.
The thermal time constants obtained clearly demonstrate the potential of such refrigeration load for Smart Customer Load Participation.
Resumo:
In this paper we present a new event recognition framework, based on the Dempster-Shafer theory of evidence, which combines the evidence from multiple atomic events detected by low-level computer vision analytics. The proposed framework employs evidential network modelling of composite events. This approach can effectively handle the uncertainty of the detected events, whilst inferring high-level events that have semantic meaning with high degrees of belief. Our scheme has been comprehensively evaluated against various scenarios that simulate passenger behaviour on public transport platforms such as buses and trains. The average accuracy rate of our method is 81% in comparison to 76% by a standard rule-based method.
Resumo:
This article explores perceptions on the suitability and effectiveness of Lifetime Homes Standards (LTHS) for those with visual impairment in Northern Ireland.
LTHS are a series of mandatory United Kingdom (UK) public sector housing design interventions, providing a model for ensuring accessible and adaptable homes throughout an occupant's lifespan. An ageing demographic with increasing incidence of diabetes, has led to rising numbers of elderly visually impaired people wanting to remain in their homes for longer.
Qualitative semi structured interviews were conducted with thirteen key stakeholders and thematically analysed. Although findings show that employing LTHS offers benefits to visually impaired residents, short-comings were also identified. Evidence indicates a need for Policy Makers, Health Care Professionals and Housing Associations to modify practices to better meet the housing needs of visually impaired people. Findings may also be applicable to those with other impairments and disabilities in relation to housing for elderly residents.
Resumo:
The key attributes of a smarter power grid include: pervasive interconnection of smart devices; extensive data generation and collection; and rapid reaction to events across a widely dispersed physical infrastructure. Modern telecommunications technologies are being deployed across power systems to support these monitoring and control capabilities. To enable interoperability, several new communications protocols and standards have been developed over the past 10 to 20 years. These continue to be refined, even as new systems are rolled out.
This new hyper-connected communications infrastructure provides an environment rich in sub-systems and physical devices that are attractive to cyber-attackers. Indeed, as smarter grid operations become dependent on interconnectivity, the communications network itself becomes a target. Consequently, we examine cyber-attacks that specifically target communications, particularly state-of-the-art standards and protocols. We further explore approaches and technologies that aim to protect critical communications networks against intrusions, and to monitor for, and detect, intrusions that infiltrate Smart Grid systems.
Resumo:
Experiences from smart grid cyber-security incidents in the past decade have raised questions on the applicability and effectiveness of security measures and protection mechanisms applied to the grid. In this chapter we focus on the security measures applied under real circumstances in today’s smart grid systems. Beginning from real world example implementations, we first review cyber-security facts that affected the electrical grid, from US blackout incidents, to the Dragonfly cyber-espionage campaign currently focusing on US and European energy firms. Provided a real world setting, we give information related to energy management of a smart grid looking also in the optimization techniques that power control engineers perform into the grid components. We examine the application of various security tools in smart grid systems, such as intrusion detection systems, smart meter authentication and key management using Physical Unclonable Functions, security analytics and resilient control algorithms. Furthermore we present evaluation use cases of security tools applied on smart grid infrastructure test-beds that could be proved important prior to their application in the real grid, describing a smart grid intrusion detection system application and security analytics results. Anticipated experimental results from the use-cases and conclusions about the successful transitions of security measures to real world smart grid operations will be presented at the end of this chapter.
Resumo:
Under the European Union Renewable Energy Directive each Member State is mandated to ensure that 10% of transport energy (excluding aviation and marine transport) comes from renewable sources by 2020. The Irish Government intends to achieve this target with a number of policies including ensuring that 10% of all vehicles in the transport fleet are powered by electricity by 2020. This paper investigates the impact of the 10% electric vehicle target in Ireland in 2020 using a dynamic programming based long term generation expansion planning model. The model developed optimizes power dispatch using hourly electricity demand curves up to 2020, while incorporating generator characteristics and certain operational requirements such as energy not served and loss of load probability while satisfying constraints on environmental emissions, fuel availability and generator operational and maintenance costs. Two distinct scenarios are analysed based on a peak and off-peak charging regimes in order to simulate the effects of the electric vehicles charging in 2020. The importance and influence of the charging regimes on the amount of energy used and tailgate emissions displaced is then determined.