145 resultados para Separatrix radius
Resumo:
The flare of radiation from the tidal disruption and accretion of a star can be used as a marker for supermassive black holes that otherwise lie dormant and undetected in the centres of distant galaxies. Previous candidate flares have had declining light curves in good agreement with expectations, but with poor constraints on the time of disruption and the type of star disrupted, because the rising emission was not observed. Recently, two `relativistic' candidate tidal disruption events were discovered, each of whose extreme X-ray luminosity and synchrotron radio emission were interpreted as the onset of emission from a relativistic jet. Here we report a luminous ultraviolet-optical flare from the nuclear region of an inactive galaxy at a redshift of 0.1696. The observed continuum is cooler than expected for a simple accreting debris disk, but the well-sampled rise and decay of the light curve follow the predicted mass accretion rate and can be modelled to determine the time of disruption to an accuracy of two days. The black hole has a mass of about two million solar masses, modulo a factor dependent on the mass and radius of the star disrupted. On the basis of the spectroscopic signature of ionized helium from the unbound debris, we determine that the disrupted star was a helium-rich stellar core.
Resumo:
In this paper, niobium doping is evaluated as a means of enhancing the electrochemical performance of a Sr2Fe1.5Mo0.5O6-δ (SFM) perovskite structure cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs) applications. As the radius of Nb approximates that of Mo and exhibits +4/+5 mixed valences, its substitution is expected to improve material performance. A series of Sr2Fe1.5Mo0.5-xNbxO6-δ (x = 0.05, 0.10, 0.15, 0.20) cathode materials are prepared and the phase structure, chemical compatibility, microstructure, electrical conductivity, polarization resistance and power generation are systematically characterized. Among the series of samples, Sr2Fe1.5Mo0.4Nb0.10O6-δ (SFMNb0.10) exhibits the highest conductivity value of 30 S cm-1 at 550°C, and the lowest area specific resistance of 0.068 Ω cm2 at 800°C. Furthermore, an anode-supported single cell incorporating a SFMNb0.10 cathode presents a maximum power density of 1102 mW cm-2 at 800°C. Furthermore no obvious performance degradation is observed over 15 h at 750°C with wet H2(3% H2O) as fuel and ambient air as the oxidant. These results demonstrate that SFMNb shows great promise as a novel cathode material for IT-SOFCs.
Resumo:
Context. Thanks to the advent of Herschel and ALMA, new high-quality observations of molecules present in the circumstellar envelopes of asymptotic giant branch (AGB) stars are being reported that reveal large differences from the existing chemical models. New molecular data and more comprehensive models of the chemistry in circumstellar envelopes are now available.
Aims: The aims are to determine and study the important formation and destruction pathways in the envelopes of O-rich AGB stars and to provide more reliable predictions of abundances, column densities, and radial distributions for potentially detectable species with physical conditions applicable to the envelope surrounding IK Tau.
Methods: We use a large gas-phase chemical model of an AGB envelope including the effects of CO and N2 self-shielding in a spherical geometry and a newly compiled list of inner-circumstellar envelope parent species derived from detailed modeling and observations. We trace the dominant chemistry in the expanding envelope and investigate the chemistry as a probe for the physics of the AGB phase by studying variations of abundances with mass-loss rates and expansion velocities.
Results: We find a pattern of daughter molecules forming from the photodissociation products of parent species with contributions from ion-neutral abstraction and dissociative recombination. The chemistry in the outer zones differs from that in traditional PDRs in that photoionization of daughter species plays a significant role. With the proper treatment of self-shielding, the N → N2 and C+→ CO transitions are shifted outward by factors of 7 and 2, respectively, compared with earlier models. An upper limit on the abundance of CH4 as a parent species of (≲2.5 × 10-6 with respect to H2) is found for IK Tau, and several potentially observable molecules with relatively simple chemical links to other parent species are determined. The assumed stellar mass-loss rate, in particular, has an impact on the calculated abundances of cations and the peak-abundance radius of both cations and neutrals: as the mass-loss rate increases, the peak abundance of cations generally decreases and the peak-abundance radius of all species moves outwards. The effects of varying the envelope expansion velocity and cosmic-ray ionization rate are not as significant.
Resumo:
We report on our findings based on the analysis of observations of the Type II-L supernova LSQ13cuw within the framework of currently accepted physical predictions of core-collapse supernova explosions. LSQ13cuw was discovered within a day of explosion, hitherto unprecedented for Type II-L supernovae. This motivated a comparative study of Type II-P and II-L supernovae with relatively well-constrained explosion epochs and rise times to maximum (optical) light. From our sample of twenty such events, we find evidence of a positive correlation between the duration of the rise and the peak brightness. On average, SNe II-L tend to have brighter peak magnitudes and longer rise times than SNe II-P. However, this difference is clearest only at the extreme ends of the rise time versus peak brightness relation. Using two different analytical models, we performed a parameter study to investigate the physical parameters that control the rise time behaviour. In general, the models qualitatively reproduce aspects of the observed trends. We find that the brightness of the optical peak increases for larger progenitor radii and explosion energies, and decreases for larger masses. The dependence of the rise time on mass and explosion energy is smaller than the dependence on the progenitor radius. We find no evidence that the progenitors of SNe II-L have significantly smaller radii than those of SNe II-P.
Resumo:
On 2011 May 31 UT a supernova (SN) exploded in the nearby galaxy M51 (the Whirlpool Galaxy). We discovered this event using small telescopes equipped with CCD cameras and also detected it with the Palomar Transient Factory survey, rapidly confirming it to be a Type II SN. Here, we present multi-color ultraviolet through infrared photometry which is used to calculate the bolometric luminosity and a series of spectra. Our early-time observations indicate that SN 2011dh resulted from the explosion of a relatively compact progenitor star. Rapid shock-breakout cooling leads to relatively low temperatures in early-time spectra, compared to explosions of red supergiant stars, as well as a rapid early light curve decline. Optical spectra of SN 2011dh are dominated by H lines out to day 10 after explosion, after which He I lines develop. This SN is likely a member of the cIIb (compact IIb) class, with progenitor radius larger than that of SN 2008ax and smaller than the eIIb (extended IIb) SN 1993J progenitor. Our data imply that the object identified in pre-explosion Hubble Space Telescope images at the SN location is possibly a companion to the progenitor or a blended source, and not the progenitor star itself, as its radius (~1013 cm) would be highly inconsistent with constraints from our post-explosion spectra.
Resumo:
We present new X-ray observations obtained with Chandra ACIS-S of the HD 189733 system, consisting of a K-type star orbited by a transiting Hot Jupiter and an M-type stellar companion. We report a detection of the planetary transit in soft X-rays with a significantly deeper transit depth than observed in the optical. The X-ray data favor a transit depth of 6%-8%, versus a broadband optical transit depth of 2.41%. While we are able to exclude several possible stellar origins for this deep transit, additional observations will be necessary to fully exclude the possibility that coronal inhomogeneities influence the result. From the available data, we interpret the deep X-ray transit to be caused by a thin outer planetary atmosphere which is transparent at optical wavelengths, but dense enough to be opaque to X-rays. The X-ray radius appears to be larger than the radius observed at far-UV wavelengths, most likely due to high temperatures in the outer atmosphere at which hydrogen is mostly ionized. We furthermore detect the stellar companion HD 189733B in X-rays for the first time with an X-ray luminosity of log LX = 26.67 erg s-1. We show that the magnetic activity level of the companion is at odds with the activity level observed for the planet-hosting primary. The discrepancy may be caused by tidal interaction between the Hot Jupiter and its host star.
Resumo:
Purpose: To assess the repeatability and accuracy of optical biometry (Lenstar LS900 optical low-coherence reflectometry [OLCR] and IOLMaster partial coherence interferometry [PCI]) and applanation ultrasound biometry in highly myopic eyes. Setting: Division of Preventive Ophthalmology, Zhongshan Ophthalmic Center, Guangzhou, China. Design: Comparative evaluation of diagnostic technology. Methods: Biometric measurements were taken in highly myopic subjects with a spherical equivalent (SE) of -6.00 diopters (D) or higher and an axial length (AL) longer than 25.0 mm. Measurements of AL and anterior chamber depth (ACD) obtained by OLCR were compared with those obtained by PCI and applanation A-scan ultrasound. Right eyes were analyzed. Repeatability was evaluated using the coefficient of variation (CoV) and agreement, using Bland-Altman analyses. Results: The mean SE was -11.20 D ± 4.65 (SD). The CoVs for repeated AL measurements using OLCR, PCI, and applanation ultrasound were 0.06%, 0.07%, and 0.20%, respectively. The limits of agreement (LoA) for AL were 0.11 mm between OLCR and PCI, 1.01 mm between OLCR and applanation ultrasound, and 1.03 mm between PCI and ultrasound. The ACD values were 0.29 mm, 0.53 mm, and 0.51 mm, respectively. These repeatability and agreement results were comparable in eyes with extreme myopia (AL ≥27.0 mm) or posterior staphyloma. The mean radius of corneal curvature was similar between OLCR and PCI (7.66 ± 0.24 mm versus 7.64 ± 0.25 mm), with an LoA of 0.12 mm. Conclusion: Optical biometry provided more repeatable and precise measurements of biometric parameters, including AL and ACD, than applanation ultrasound biometry in highly myopic eyes. Financial Disclosure: No author has a financial or proprietary interest in any material or method mentioned. © 2012 ASCRS and ESCRS.
Resumo:
PURPOSE: Primary angle-closure glaucoma (PACG) is more prevalent among Chinese than whites. The authors tested the hypothesis that Chinese have shallower anterior chambers than do whites, a factor that may be related to PACG prevalence. METHODS: The authors compared anterior chamber depth, axial length, radius of corneal curvature, and refractive error among 531 Chinese, 170 whites, and 188 blacks older than 40 years of age using the same model of instruments and identical technique. RESULTS: Mean anterior chamber depth and axial length did not differ significantly for the three groups. Whites had a significantly higher prevalence of hyperopia > 2 diopters than did Chinese. Radius of corneal curvature was significantly smaller among Chinese than whites or blacks. CONCLUSIONS: These results suggest that Chinese do not differ on a population basis from other ethnic groups in many of the biometric risk factors known to be of importance for PACG. It will be necessary to identify other ocular biometric parameters to explain the excess burden of PACG among Chinese, which may improve the effectiveness of screening for this disease in all populations.
Resumo:
PURPOSE: Recent studies report that increased corneal edema because of contact lens wear under closed lids is associated with elevated Goldmann intraocular pressure (GAT IOP). We sought to assess whether the impact of postoperative corneal edema on GAT IOP would be similar and to determine the differential effect of different amounts of edema. METHODS: The setting is a tertiary level cataract clinic in Shantou, China. Pre- and postoperative (day 1) GAT IOP, central corneal thickness (CCT), corneal hysteresis, corneal resistance factor, and radius of corneal curvature were measured for consecutive patients undergoing phacoemulsification surgery by 2 experienced surgeons. Corneal edema was calculated as the percentage increase in CCT. RESULTS: Among 136 subjects (mean age, 62.5 ± 15.4 years; 53.7% women), the mean increase in CCT was 10.3% postoperatively. Greater corneal edema was associated with lower GAT IOP in unadjusted analyses (P < 0.03) and in linear regression models (P < 0.01). In the model, higher corneal resistance factor (P < 0.001), lower corneal hysteresis (P < 0.001), and steeper radius of corneal curvature (P < 0.001) were associated with higher GAT IOP. Among subjects with edema < the median, edema was associated with lower GAT IOP (P = 0.004), whereas among those with edema ≥ the median, edema was not associated with GAT IOP. An increase in CCT of 7% was associated with an 8 mm Hg underestimation of GAT IOP in our models. CONCLUSIONS: The effect of postoperative edema on GAT IOP seems to be the opposite of contact lens-induced edema. The magnitude of the effect is potentially relevant to patient management.
Resumo:
PURPOSE: To describe the distribution of central corneal thickness (CCT), intraocular pressure (IOP), and their determinants and association with glaucoma in Chinese adults.DESIGN: Population-based cross-sectional study.METHODS: Chinese adults aged 50 years and older were identified using cluster random sampling in Liwan District, Guangzhou. CCT (both optical [OCCT] and ultrasound [UCCT]), intraocular pressure (by Tonopen, IOP), refractive error (by autorefractor, RE), radius of corneal curvature (RCC), axial length (AL), and body mass index (BMI) were measured, and history of hypertension and diabetes (DM) was collected by questionnaire. Right eye data were analyzed.RESULTS: The mean values of OCCT, UCCT, and IOP were 512 ± 29.0 μm, 542 ± 31.4 μm, and 15.2 ± 3.1 mm Hg, respectively. In multiple regression models, CCT declined with age (P < .001) and increased with greater RCC (P < .001) and DM (P = .037). IOP was positively associated with greater CCT (P < .001), BMI (P < .001), and hypertension (P < .001). All 25 persons with open-angle glaucoma had IOP <21 mm Hg. CCT did not differ significantly between persons with and without open- or closed-angle glaucoma. Among 65 persons with ocular hypertension (IOP >97.5th percentile), CCT (555 ± 29 μm) was significantly (P = .01) higher than for normal persons.CONCLUSIONS: The distributions of CCT and IOP in this study are similar to that for other Chinese populations, though IOP was lower than for European populations, possibly due to lower BMI and blood pressure. Glaucoma with IOP <21 mm Hg is common in this population. We found no association between glaucoma and CCT, though power (0.3) for this analysis was low.