167 resultados para Respiratory organs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim of the study
This paper presents the experiences of undergraduate nursing students who participated in a creative learning project to explore the cells, tissues and organs of the human body through felt making.

Context and Background
This project was funded by a Teaching Innovation Award from the School of Nursing and Midwifery, Queen’s University Belfast to explore creative ways of engaging year one undergraduate nursing students in learning anatomy and physiology. The project was facilitated through collaboration between University Teaching staff and Arts Care, a unique arts and health charity in Northern Ireland.

Methodology
Twelve year one students participated in four workshops designed to explore the cells, tissues and organs of the human body through the medium of felt. Facilitated by an Arts Care artist, students translated their learning into striking felt images. The project culminated in the exhibition of this unique collection of work which has been viewed by fellow students, teaching staff, nurses from practice, and artists from Arts Care, friends, family and members of the public.

Key Findings and conclusions
The opportunity to learn in a more diverse way within a safe and non-judgmental environment was valued, with students’ reporting a greater confidence in life science knowledge. Self- reflection and group discussion revealed that the project was a unique creative learning experience for all involved – students, teaching staff and artist – resulting in individual and collective benefits far beyond knowledge acquisition. As individuals we each felt respected and recognised for our unique contribution to the project. Working in partnership with Arts Care enabled us to experience the benefits of creativity to well-being and reflect upon how engagement in creative activities can help healthcare professionals to focus on the individual patient’s needs and how this is fundamental to enhancing patient-centred care

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human respiratory syncytial virus (HRSV) is the most important viral cause of severe respiratory tract disease in infants. Two subgroups (A and B) have been identified, which cocirculate during, or alternate between, yearly epidemics and cause indistinguishable disease. Existing in vitro and in vivo models of HRSV focus almost exclusively on subgroup A viruses. Here, a recombinant (r) subgroup B virus (rHRSV(B05)) was generated based on a consensus genome sequence obtained directly from an unpassaged clinical specimen from a hospitalized infant. An additional transcription unit containing the gene encoding enhanced green fluorescent protein (EGFP) was introduced between the phosphoprotein and matrix genes (position 5) of the genome to generate rHRSV(B05)EGFP(5). The recombinant viruses replicated efficiently in both HEp-2 cells and in well-differentiated normal human bronchial cells grown at air-liquid interface. Intranasal infection of cotton rats (Sigmodon hispidus) resulted in high numbers of EGFP(+) cells in epithelia of the nasal septum and conchae. When administered in a relatively large inoculum volume, the virus also replicated efficiently in bronchiolar epithelial cells and spread extensively in both the upper and lower respiratory tracts. Virus replication was not observed in ciliated epithelial cells of the trachea. This is the first virulent rHRSV strain with the genetic composition of a currently circulating wild-type virus. In vivo tracking of infected cells by means of EGFP fluorescence in the absence of cytopathic changes increases the sensitivity of virus detection in HRSV pathogenesis studies.

IMPORTANCE

Virology as a discipline has depended on monitoring cytopathic effects following virus culture in vitro. However, wild-type viruses isolated from patients often do not cause significant changes to infected cells, necessitating blind passage. This can lead to genetic and phenotypic changes and the generation of high-titer, laboratory-adapted viruses with diminished virulence in animal models of disease. To address this, we determined the genome sequence of an unpassaged human respiratory syncytial virus from a sample obtained directly from an infected infant, assembled a molecular clone, and recovered a wild-type recombinant virus. Addition of a gene encoding enhanced green fluorescent protein allowed this wild-type virus to be tracked in primary human cells and living animals in the absence of significant cytopathic effects. Imaging of fluorescent cells proved to be a highly valuable tool for monitoring the spread of virus and may help improve assays for evaluating novel intervention strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bovine Respiratory Disease (BRD) is considered to be one of the most significant causes of economic loss in cattle worldwide. The disease has multifactorial aetiology, where viral induced respiratory damage can predispose animals to developing secondary bacterial infections. Accurate identification of viral infected animals prior to the onset of bacterial infection is necessary to reduce the overuse of antimicrobial treatments and minimize further economic losses from reduced production capacity and death. This research focuses on Bovine Parainfluenza Virus Type 3 (BPIV-3), one of the viruses involved in generating BRD. Vaccination measures for BPIV-3 can induce a level of immunity preventing disease progression, however, not all animals respond equally and immunization can complicate disease diagnosis. Alternative diagnostic approaches are required to identify animals which fail to respond to vaccination during infection outbreaks and are therefore likely to be more susceptible to secondary bacterial infections. Mass spectrometry based metabolomics was employed to identify plasma markers capable of differentiating between vaccinated and non-vaccinated calves after challenge with BPIV-3. Differentiation of vaccinated and non-vaccinated study groups (n=6) was possible as early as day 2 post-BPIV-3 challenge up until day 20 using a panel of potential metabolite markers. This study illustrates the potential for metabolomics to provide more detailed information on animal vaccination status that could be used to develop tools for improved herd health management, reduce economic loss through rapid identification and isolation of animals without immune protection (improving herd level immunity) and help reduce the usage of antimicrobial therapeutic treatments in animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Acute respiratory distress syndrome (ARDS) is a common clinical syndrome with high mortality and long-term morbidity. To date there is no effective pharmacological therapy. Aspirin therapy has recently been shown to reduce the risk of developing ARDS, but the effect of aspirin on established ARDS is unknown.

METHODS: In a single large regional medical and surgical ICU between December 2010 and July 2012, all patients with ARDS were prospectively identified and demographic, clinical, and laboratory variables were recorded retrospectively. Aspirin usage, both pre-hospital and during intensive care unit (ICU) stay, was included. The primary outcome was ICU mortality. We used univariate and multivariate logistic regression analyses to assess the impact of these variables on ICU mortality.

RESULTS: In total, 202 patients with ARDS were included; 56 (28%) of these received aspirin either pre-hospital, in the ICU, or both. Using multivariate logistic regression analysis, aspirin therapy, given either before or during hospital stay, was associated with a reduction in ICU mortality (odds ratio (OR) 0.38 (0.15 to 0.96) P = 0.04). Additional factors that predicted ICU mortality for patients with ARDS were vasopressor use (OR 2.09 (1.05 to 4.18) P = 0.04) and APACHE II score (OR 1.07 (1.02 to 1.13) P = 0.01). There was no effect upon ICU length of stay or hospital mortality.

CONCLUSION: Aspirin therapy was associated with a reduced risk of ICU mortality. These data are the first to demonstrate a potential protective role for aspirin in patients with ARDS. Clinical trials to evaluate the role of aspirin as a pharmacological intervention for ARDS are needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute respiratory distress syndrome (ARDS) is a devastating disorder characterized by increased alveolar permeability with no effective treatment beyond supportive care. Current mechanisms underlying ARDS focus on alveolar endothelial and epithelial injury caused by products of innate immune cells and platelets. However, the role of adaptive immune cells in ARDS remains largely unknown. In this study, we report that expansion of Ag-specific αβTh17 cells contributes to ARDS by local secretion of IL-17A, which in turn directly increases alveolar epithelial permeability. Mice with a highly restrictive defect in Ag-specific αβTh17 cells were protected from experimental ARDS induced by a single dose of endotracheal LPS. Loss of IL-17 receptor C or Ab blockade of IL-17A was similarly protective, further suggesting that IL-17A released by these cells was responsible for this effect. LPS induced a rapid and specific clonal expansion of αβTh17 cells in the lung, as determined by deep sequencing of the hypervariable CD3RβVJ region of the TCR. Our findings could be relevant to ARDS in humans, because we found significant elevation of IL-17A in bronchoalveolar lavage fluid from patients with ARDS, and rIL-17A directly increased permeability across cultured human alveolar epithelial monolayers. These results reveal a previously unexpected role for adaptive immune responses that increase alveolar permeability in ARDS and suggest that αβTh17 cells and IL-17A could be novel therapeutic targets for this currently untreatable disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nontypeable Haemophilus influenzae (NTHI) is an opportunistic pathogen that is an important cause of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). COPD is an inflammatory disease of the airways, and exacerbations are acute inflammatory events superimposed on this background of chronic inflammation. Azithromycin (AZM) is a macrolide antibiotic with antibacterial and anti-inflammatory properties and a clinically proven potential for AECOPD prevention and management. Relationships between AZM efficacy and resistance by NTHI and between bactericidal and immunomodulatory effects on NTHI respiratory infection have not been addressed. In this study, we employed two pathogenic NTHI strains with different AZM susceptibilities (NTHI 375 [AZM susceptible] and NTHI 353 [AZM resistant]) to evaluate the prophylactic and therapeutic effects of AZM on the NTHI-host interplay. At the cellular level, AZM was bactericidal toward intracellular NTHI inside alveolar and bronchial epithelia and alveolar macrophages, and it enhanced NTHI phagocytosis by the latter cell type. These effects correlated with the strain MIC of AZM and the antibiotic dose. Additionally, the effect of AZM on NTHI infection was assessed in a mouse model of pulmonary infection. AZM showed both preventive and therapeutic efficacies by lowering NTHI 375 bacterial counts in lungs and bronchoalveolar lavage fluid (BALF) and by reducing histopathological inflammatory lesions in the upper and lower airways of mice. Conversely, AZM did not reduce bacterial loads in animals infected with NTHI 353, in which case a milder anti-inflammatory effect was also observed. Together, the results of this work link the bactericidal and anti-inflammatory effects of AZM and frame the efficacy of this antibiotic against NTHI respiratory infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In spite of decades of research, the acute respiratory distress syndrome (ARDS) continues to have an unacceptably high mortality and morbidity. Mesenchymal stromal cells (MSCs) present a promising candidate for the treatment of this condition and have demonstrated benefit in preclinical models. MSCs, which are a topic of growing interest in many inflammatory disorders, have already progressed to early phase clinical trials in ARDS. While a number of their mechanisms of effect have been elucidated, a better understanding of the complex actions of these cells may pave the way for MSC modifications, which might enable more effective translation into clinical practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Respiratory viral infections are a common cause of acute coughing, an irritating symptom for the patient and an important mechanism of transmission for the virus. Although poorly described, the inflammatory consequences of infection likely induce coughing by chemical (inflammatory mediator) or mechanical (mucous) activation of the cough-evoking sensory nerves that innervate the airway wall. For some individuals, acute cough can evolve into a chronic condition, in which cough and aberrant airway sensations long outlast the initial viral infection. This suggests that some viruses have the capacity to induce persistent plasticity in the neural pathways mediating cough. In this brief review we present the clinical evidence of acute and chronic neural dysfunction following viral respiratory tract infections and explore possible mechanisms by which the nervous system may undergo activation, sensitization and plasticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To audit the quality of treatment of lower respiratory tract infections (LRTIs) and urinary tract infections (UTIs) and to identify targets for antibiotic stewardship. Methods: The audit involved collecting data on admitted patients, who were diagnosed with LRTIs or UTIs and subsequently received antibiotic treatment (January 2009-April 2009). Key findings: The percentage adherence rate for hospital antibiotic policy was 68.6% (24/35). Documentation of the CURB-65 score was found in 80% (16/20) of the patients' clinical notes, for which 46.2% (6/13) of patients were treated according to their CURB- 65 score. The percentages of delayed and missed doses for all antibiotics were 21.7% (254/1171) and 8.6% (101/1171), respectively. The percentage of patients switched from intravenous to oral antibiotics in accordance with the policy was 58.5% (31/53). The mean length of stay for patients switched in line with the guidelines was 6.9 days (range: 2-18 days) compared with 13.2 days (range: 4-28 days) for patients treated with intravenous antibiotics >24 h after the intravenous to oral switch criteria were fulfilled; this equates to on average an extra 6.3 days of hospitalisation (p=0.01). Conclusions: The study identified a number of targets for quality improvement including adherence to antibiotic policy, documentation of the CURB-65 score in patients' notes and treating patients accordingly, addressing the issue of missed and delayed doses, and maintaining adherence to the hospital intravenous-to-oral antibiotic switch policy. The findings suggest that the quality of antibiotic prescribing could be improved by measuring and addressing such performance indicators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caballeria liewi Lim, 1995, uses adhesive secretions from the head organs and posterior secretory systems to assist in locomotion and attachment. Ultrastructural investigations show that the head organs of C. liewi consist of three pairs of antero-lateral pit-like openings bearing microvilli and ducts leading from two types of uninucleated gland cells (located lateral to the pharynx), one type producing rod-like (S1) bodies with an electron-dense matrix containing less electron-dense vesicles and the second type producing oval (S2) bodies with a homogeneous electron-dense matrix. Interlinking band-like structures are observed between S1 bodies and between S2 bodies. S1 body is synthesised in the granular endoplasmic reticulum, transported to a Golgi complex to be packaged into vesicles and routed into ducts for exudation. The synthesis of the S2 body is unresolved. Haptoral secretions manifested externally as net-like structures are derived from dual electron-dense (DED) secretory body produced in the peduncular gland cells. The DED body consists of a less electron-dense oval core in a homogeneous electron-dense matrix. On exocytosis into the pyriform haptoral reservoir, DED bodies are transformed into a secretion with two types of inclusions (less electron-dense oval and electron-dense spherical inclusions) in an electron-dense matrix. The secretions are further transformed (as small, oval, electron-dense bodies) when transported to the superficial anchor grooves, and on exudation into the gill tissues, the secretions become an electron-dense matrix. Secretory bodies associated with uniciliated structures, anchor sleeves and marginal hooks are also observed.