194 resultados para Respiratory Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Respiratory syncytial virus (RSV) is a major pathogen that primarily infects airway epithelium. Most infants suffer mild upper respiratory tract (URT) symptoms, while approximately one third progress to lower respiratory tract (LRT) involvement. Despite the ubiquity of URT infection, little is known about the relative cytopathogenesis of RSV infection in infant URT and LRT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stratified approaches to treating disease are very attractive, as efficacy is maximised by identifying responders using a companion diagnostic or by careful phenotyping. This approach will spare non-responders form potential side-effects. This has been pioneered in oncology where single genes or gene signatures indicate tumours that will respond to specific chemotherapies. Stratified approaches to the treatment of asthma with biological therapies are currently being extensively studied. In cystic fibrosis (CF), therapies have been developed that are targeted at specific functional classes of mutations. Ivacaftor, the first of such therapies, potentiates dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) protein Class III mutations and is now available in the USA and some European countries. Pivotal studies in patients with a G551D mutation, the most common Class III mutation, have demonstrated significant improvements in clinically important outcomes such as spirometry and exacerbations. Sweat chloride was significantly reduced demonstrating a functional effect on the dysfunctional CFTR protein produced by the G551D mutation. Symptom scores are also greatly improved to a level that indicates that this is a transformational treatment for many patients. This stratified approach to the development of therapies based on the functional class of the mutations in CF is likely to lead to new drugs or combinations that will correct the basic defect in many patients with CF. © ERS 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Respiratory motion introduces complex spatio-temporal variations in the dosimetry of radiotherapy and may contribute towards uncertainties in radiotherapy planning. This study investigates the potential radiobiological implications occurring due to tumour motion in areas of geometric miss in lung cancer radiotherapy. A bespoke phantom and motor-driven platform to replicate respiratory motion and study the consequences on tumour cell survival in vitro was constructed. Human non-small-cell lung cancer cell lines H460 and H1299 were irradiated in modulated radiotherapy configurations in the presence and absence of respiratory motion. Clonogenic survival was calculated for irradiated and shielded regions. Direction of motion, replication of dosimetry by multi-leaf collimator (MLC) manipulation and oscillating lead shielding were investigated to confirm differences in cell survival. Respiratory motion was shown to significantly increase survival for out-of-field regions for H460/H1299 cell lines when compared with static irradiation (p <0.001). Significantly higher survival was found in the in-field region for the H460 cell line (p <0.030). Oscillating lead shielding also produced these significant differences. Respiratory motion and oscillatory delivery of radiation dose to human tumour cells has a significant impact on in- and out-of-field survival in the presence of non-uniform irradiation in this in vitro set-up. This may have important radiobiological consequences for modulated radiotherapy in lung cancer. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Respiratory syncytial viral (RSV) infections are a frequent cause of chronic obstructive pulmonary disease (COPD) exacerbations, which are a major factor in disease progression and mortality. RSV is able to evade antiviral defenses to persist in the lungs of COPD patients. Though RSV infection has been identified in COPD, its contribution to cigarette smoke-induced airway inflammation and lung tissue destruction has not been established. Here we examine the long-term effects of cigarette smoke exposure, in combination with monthly RSV infections, on pulmonary inflammation, protease production and remodeling in mice. RSV exposures enhanced the influx of macrophages, neutrophils and lymphocytes to the airways of cigarette smoke exposed C57BL/6J mice. This infiltration of cells was most pronounced around the vasculature and bronchial airways. By itself, RSV caused significant airspace enlargement and fibrosis in mice and these effects were accentuated with concomitant smoke exposure. Combined stimulation with both smoke and RSV synergistically induced cytokine (IL-1a, IL-17, IFN-c, KC, IL-13, CXCL9, RANTES, MIF and GM-CSF) and protease (MMP-2, -8, -12, -13, -16 and cathepsins E, S, W and Z) expression. In addition, RSV exposure caused marked apoptosis within the airways of infected mice, which was augmented by cigarette smoke exposure. RSV and smoke exposure also reduced protein phosphatase 2A (PP2A) and protein tyrosine phosphates (PTP1B) expression and activity. This is significant as these phosphatases counter smoke-induced inflammation and protease expression. Together, these findings show for the first time that recurrent RSV infection markedly enhances inflammation, apoptosis and tissue destruction in smoke-exposed mice. Indeed, these results indicate that preventing RSV transmission and infection has the potential to significantly impact on COPD severity and progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Infection-related exacerbations of respiratory diseases are a major health concern; thus understanding the mechanisms driving them is of paramount importance. Despite distinct inflammatory profiles and pathological differences, asthma and COPD share a common clinical facet: raised airway ATP levels. Furthermore, evidence is growing to suggest that infective agents can cause the release of extracellular vesicle (EVs) in vitro and in bodily fluids. ATP can evoke the P2X7/caspase 1 dependent release of IL-1β/IL-18 from EVs; these cytokines are associated with neutrophilia and are increased during exacerbations. Thus we hypothesized that respiratory infections causes the release of EVs in the airway and that the raised ATP levels, present in respiratory disease, triggers the release of IL-1β/IL-18, neutrophilia and subsequent disease exacerbations.

Methods: To begin to test this hypothesis we utilised human cell-based assays, ex vivo murine BALF, in vivo pre-clinical models and human samples to test this hypothesis.

Results: Data showed that in a murine model of COPD, known to have increased airway ATP levels, infective challenge causes exacerbated inflammation. Using cell-based systems, murine models and samples collected from challenged healthy subjects, we showed that infection can trigger the release of EVs. When exposed to ATP the EVs release IL-1b/IL-18 via a P2X7/caspase-dependent mechanism. Furthermore ATP challenge can cause a P2X7 dependent increase in LPS-driven neutrophilia.

Conclusions: This preliminary data suggests a possible mechanism for how infections could exacerbate respiratory diseases and may highlight a possible signalling pathway for drug discovery efforts in this area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bladder mucosa consists of the urothelium, basement membrane, and lamina propria (LP). Although the urothelium has been given much attention, it may be regarded as one part of a signaling system involving another equally important component of the bladder mucosa, namely, the LP. The LP lies between the basement membrane of the mucosa and the detrusor muscle and is composed of an extracellular matrix containing several types of cells, including fibroblasts, adipocytes, interstitial cells, and afferent and efferent nerve endings. In addition, the LP contains a rich vascular network, lymphatic vessels, elastic fibers, and smooth muscle fascicles (muscularis mucosae). The roles of the LP and its components in bladder function have not been definitively established, though it has been suggested to be the capacitance layer of the bladder, determining bladder compliance and enabling adaptive changes to increasing volumes. However, the bladder LP may also serve as a communication center, with an important integrative role in signal transduction to the central nervous system (nociception, mechanosensation). The LP may also, by means of its different components, make it possible for the urothelium to transmit information to other components of the bladder wall, contributing to activation of the detrusor muscle. In addition, the LP may serve as a source for production of factors influencing the growth of both the overlying urothelium and the underlying detrusor muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient formation of early GCs depends on the close interaction between GC B cells and antigen-primed CD4+ follicular helper T cells (TFH). A tight and stable formation of TFH/B cell conjugates is required for cytokine-driven immunoglobulin class switching and somatic hypermutation of GC B cells. Recently, it has been shown that the formation of TFH/B cell conjugates is crucial for B-cell differentiation and class switch following infection with Leishmania major parasites. However, the subtype of DCs responsible for TFH-cell priming against dermal antigens is thus far unknown. Utilizing a transgenic C57BL/6 mouse model designed to trigger the ablation of Langerin+ DC subsets in vivo, we show that the functionality of TFH/B cell conjugates is disturbed after depletion of Langerhans cells (LCs): LC-depleted mice show a reduction in somatic hypermutation in B cells isolated from TFH/B cell conjugates and markedly reduced GC reactions within skin-draining lymph nodes. In conclusion, this study reveals an indispensable role for LCs in promoting GC B-cell differentiation following cutaneous infection with Leishmania major parasites. We propose that LCs are key regulators of GC formation and therefore have broader implications for the development of allergies and autoimmunity as well as for future vaccination strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background

Studies in animals and in vitro and phase 2 studies in humans suggest that statins may be beneficial in the treatment of the acute respiratory distress syndrome (ARDS). This study tested the hypothesis that treatment with simvastatin would improve clinical outcomes in patients with ARDS.

Methods

In this multicenter, double-blind clinical trial, we randomly assigned (in a 1:1 ratio) patients with an onset of ARDS within the previous 48 hours to receive enteral simvastatin at a dose of 80 mg or placebo once daily for a maximum of 28 days. The primary outcome was the number of ventilator-free days to day 28. Secondary outcomes included the number of days free of nonpulmonary organ failure to day 28, mortality at 28 days, and safety.

Results

The study recruited 540 patients, with 259 patients assigned to simvastatin and 281 to placebo. The groups were well matched with respect to demographic and baseline physiological variables. There was no significant difference between the study groups in the mean (±SD) number of ventilator-free days (12.6±9.9 with simvastatin and 11.5±10.4 with placebo, P=0.21) or days free of nonpulmonary organ failure (19.4±11.1 and 17.8±11.7, respectively; P=0.11) or in mortality at 28 days (22.0% and 26.8%, respectively; P=0.23). There was no significant difference between the two groups in the incidence of serious adverse events related to the study drug.

Conclusions

Simvastatin therapy, although safe and associated with minimal adverse effects, did not improve clinical outcomes in patients with ARDS. (Funded by the U.K. National Institute for Health Research Efficacy and Mechanism Evaluation Programme and others; HARP-2 Current Controlled Trials number, ISRCTN88244364.)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2011, a European Respiratory Society Task Force embarked on a process to determine the position and clinical relevance of the cough hypersensitivity syndrome, a disorder characterised by troublesome coughing often triggered by low levels of thermal, mechanical or chemical exposure, in the management of patients with chronic cough. A 21-component questionnaire was developed by an iterative process supported by a literature review. 44 key opinion leaders in respiratory medicine were selected and interviewed as to their opinions. There was a high degree of unanimity in the responses obtained, with all opinion leaders supporting the concept of cough hypersensitivity as a clinically useful paradigm. The classic stratification of cough into asthmatic, rhinitic and reflux-related phenotypes was supported. Significant disparity of opinion was seen in the response to two questions concerning the therapy of chronic cough. First, the role of acid suppression in reflux cough was questioned. Secondly, the opinion leaders were split as to whether a trial of oral steroids was indicated to establish a diagnosis of eosinophilic cough. The cough hypersensitivity syndrome was clearly endorsed by the opinion leaders as a valid and useful concept. They considered that support of patients with chronic cough was inadequate and the Task Force recommends that further work is urgently required in this neglected area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We hypothesised that early life events are not routinely considered by most respiratory specialists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycoplasma pneumoniae (M. pneumoniae) is a common pathogen in cases of atypical pneumonia. Most individuals with Mycoplasma pneumonia run a benign course, with non-specific symptoms of malaise, fever and non-productive cough that usually resolve with no long-term sequelae. Acute lung injury is not commonly seen in Mycoplasma pneumonia. We report a case of acute respiratory distress syndrome cause by M. pneumoniae diagnosed by quantitative real-time polymerase chain reaction (RT-PCR).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of proteases in viral infection of the lung is poorly understood. Thus, we examined matrix metalloproteinases (MMPs) and cathepsin proteases in respiratory syncytial virus (RSV)-infected mouse lungs. RSV-induced gene expression for MMPs -2, -3, -7, -8, -9, -10, -12, -13, -14, -16, -17, -19, -20, -25, -27, and -28 and cathepsins B, C, E, G, H, K, L1, S, W, and Z in the airways of Friend leukemia virus B sensitive strain mice. Increased proteases were present in the bronchoalveolar lavage fluid (BALF) and lung tissue during infection. Mitochondrial antiviral-signaling protein (MAVS) and TIR-domain-containing adapter-inducing interferon-β-deficient mice were exposed to RSV. Mavs-deficient mice had significantly lower expression of airway MMP-2, -3, -7, -8, -9, -10, -12, -13, and -28 and cathepsins C, G, K, S, W, and Z. In lung epithelial cells, retinoic acid-inducible gene-1 (RIG-I) was identified as the major RIG-I-like receptor required for RSV-induced protease expression via MAVS. Overexpression of RIG-I or treatment with interferon-β in these cells induced MMP and cathepsin gene and protein expression. The significance of RIG-1 protease induction was demonstrated by the fact that inhibiting proteases with batimastat, E64 or ribavirin prevented airway hyperresponsiveness and enhanced viral clearance in RSV-infected mice.