163 resultados para Radiation Induced Skin Reactions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amphibian skin is a rich and unique source of novel bioactive peptides most of which are endowed with either antimicrobial or pharmacological properties. Here we report the identification and structural characterization of a novel peptide, named senegalin, which possesses both activities. Senegalin is a hexadecapeptide amide (FLPFLIPALTSLISSL-NH2) of unique primary structure found in the skin secretion of the African running frog, Kassina senegalensis. The structure of the biosynthetic precursor of senegalin, deduced from cloned skin cDNA, consists of 76 amino acid residues and displays the typical domain organization of an amphibian skin peptide precursor. Both natural senegalin and its synthetic replicate
displayed antimicrobial and myotropic activities. Senegalin was active against Staphylococcus aureus (MIC 50µM) and Candida albicans (MIC 150µM) but was nonhaemolytic at concentrations up to and including 150µM. In contrast, senegalin induced a dose-dependent contraction of rat urinary bladder smooth muscle (EC50 2.9nM) and a dosedependent relaxation of rat tail artery smooth muscle (EC50 37.7nM). Senegalin thus represents a prototype biologically-active amphibian skin peptide and illustrates the fact thatamphibian skin secretion peptidomes continue to be unique sources of such molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The efficacious delivery of antigens to antigen-presenting cells (APCs), in particular, to dendritic cells (DCs), and their subsequent activation remains a significant challenge in the development of effective vaccines. This study highlights the potential of dissolving microneedle (MN) arrays laden with nanoencapsulated antigen to increase vaccine immunogenicity by targeting antigen specifically to contiguous DC networks within the skin. Following in situ uptake, skin-resident DCs were able to deliver antigen-encapsulated poly-d,l-lactide-co-glycolide (PGLA) nanoparticles to cutaneous draining lymph nodes where they subsequently induced significant expansion of antigen-specific T cells. Moreover, we show that antigen-encapsulated nanoparticle vaccination via microneedles generated robust antigen-specific cellular immune responses in mice. This approach provided complete protection in vivo against both the development of antigen-expressing B16 melanoma tumors and a murine model of para-influenza, through the activation of antigen-specific cytotoxic CD8(+) T cells that resulted in efficient clearance of tumors and virus, respectively. In addition, we show promising findings that nanoencapsulation facilitates antigen retention into skin layers and provides antigen stability in microneedles. Therefore, the use of biodegradable polymeric nanoparticles for selective targeting of antigen to skin DC subsets through dissolvable MNs provides a promising technology for improved vaccination efficacy, compliance, and coverage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Waxy Monkey Leaf Frog, Phyllomedusa sauvagei, has been extensively-studied for many years, and a broad spectrum of bioactive peptides has been found in its skin secretions. Here we report the discovery of a novel tryptophyllin (TPH) peptide, named PsT-1, from this frog species. Skin secretions from specimens of P. sauvagei were collected by mild electrical stimulation. Peptides were identified and characterized by transcriptome cloning, and the structure was confirmed by MALDI-TOF mass spectrometry and automated Edman degradation. This novel peptide was encoded by a single precursor of 61 amino acid residues, whose primary structure was deduced from cloned skin cDNA. Analysis of different amphibian tryptophyllins revealed that PsT-1 exhibited a high degree of primary structural similarity to its homologues, PdT-1 and PdT-2, from the Mexican giant leaf frog, Pachymedusa dacnicolor. A synthetic replicate of PsT-1 was found to inhibit bradykinin-induced vasorelaxation of phenylephrine pre-constricted rat tail artery smooth muscle. It was also found that PsT-1 had an anti-proliferative effect on three different human prostate cancer cell lines (LNCaP/PC3/DU145), by use of an MTT assay coupled with direct cell counting as measures of cell growth. These data indicate that PsT-1 is a likely bradykinin receptor antagonist and its biological effects are probably mediated through bradykinin receptors. As a BK antagonist, PST-1, with antagonistic effects on BK in artery smooth muscle, inhibition of proliferation in prostate cancer cells and lack of undesirable side effects, may have potential in cardiovascular, inflammatory and anticancer therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The efficiency of fuel cells and metal-air batteries is significantly limited by the activation of oxygen reduction and evolution reactions. Despite the well-recognized role of oxygen reaction kinetics on the viability of energy technologies, the governing mechanisms remain elusive and until now have been addressable only by macroscopic studies. This lack of nanoscale understanding precludes optimization of material architecture. Here, we report direct measurements of oxygen reduction/evolution reactions and oxygen vacancy diffusion on oxygen-ion conductive solid surfaces with sub-10 nm resolution. In electrochemical strain microscopy, the biased scanning probe microscopy tip acts as a moving, electrocatalytically active probe exploring local electrochemical activity. The probe concentrates an electric field in a nanometre-scale volume of material, and bias-induced, picometre-level surface displacements provide information on local electrochemical processes. Systematic mapping of oxygen activity on bare and platinum-functionalized yttria-stabilized zirconia surfaces is demonstrated. This approach allows direct visualization of the oxygen reduction/evolution reaction activation process at the triple-phase boundary, and can be extended to a broad spectrum of oxygen-conductive and electrocatalytic materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure, thermal stability, and catalytic behavior of a novel highly dispersed silica-supported Pd/Sn catalyst prepared by an organometallic route have been examined by X-ray photoelectron, X-ray diffraction, and X-ray absorption, fine structure spectroscopies, the latter two measurements being carried outwith an in situ reaction cell. Additional reactor measurements were performed on a more Sn-rich catalyst and on a pure Pd catalyst. Varying the temperature of reduction induced large variations in catalytic performance toward ethyne-coupling reactions. These changes are understandable in terms of the destruction of SnO2-like structures surrounding the Pd core, yielding a skin of metallic Sn which subsequently undergoes intermixing with Pd. The overall thermal and catalytic behavior of these highly dispersed materials accords well with the analogous single-crystal model system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate the contribution of glycation and oxidation reactions to the modification of insoluble collagen in aging and diabetes, Maillard reaction products were measured in skin collagen from 39 type 1 diabetic patients and 52 nondiabetic control subjects. Compounds studied included fructoselysine (FL), the initial glycation product, and the glycoxidation products, N epsilon-(carboxymethyl) lysine (CML) and pentosidine, formed during later Maillard reactions. Collagen-linked fluorescence was also studied. In nondiabetic subjects, glycation of collagen (FL content) increased only 33% between 20 and 85 yr of age. In contrast, CML, pentosidine and fluorescence increased five-fold, correlating strongly with age. In diabetic patients, collagen FL was increased threefold compared with nondiabetic subjects, correlating strongly with glycated hemoglobin but not with age. Collagen CML, pentosidine and fluorescence were increased up to twofold in diabetic compared with control patients: this could be explained by the increase in glycation alone, without invoking increased oxidative stress. There were strong correlations among CML, pentosidine and fluorescence in both groups, providing evidence for age-dependent chemical modification of collagen via the Maillard reaction, and acceleration of this process in diabetes. These results support the description of diabetes as a disease characterized by accelerated chemical aging of long-lived tissue proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glycation, oxidation, and nonenzymatic browning of protein have all been implicated in the development of diabetic complications. The initial product of glycation of protein, fructoselysine (FL), undergoes further reactions, yielding a complex mixture of browning products, including the fluorescent lysine-arginine cross-link, pentosidine. Alternatively, FL may be cleaved oxidatively to form N(epsilon)-(carboxymethyl)lysine (CML), while glycated hydroxylysine, an amino-acid unique to collagen, may yield N(epsilon)-(carboxymethyl)hydroxylysine (CMhL). We have measured FL, pentosidine, fluorescence (excitation = 328 nm, emission = 378 nm), CML, and CMhL in insoluble skin collagen from 14 insulin-dependent diabetic patients before and after a 4-mo period of intensive therapy to improve glycemic control. Mean home blood glucose fell from 8.7 +/- 2.5 (mean +/- 1 SD) to 6.8 +/- 1.4 mM (P less than 0.005), and mean glycated hemoglobin (HbA1) from 11.6 +/- 2.3% to 8.3 +/- 1.1% (P less than 0.001). These changes were accompanied by a significant decrease in glycation of skin collagen, from 13.2 +/- 4.3 to 10.6 +/- 2.3 mmol FL/mol lysine (P less than 0.002). However, levels of browning and oxidation products (pentosidine, CML, and CMhL) and fluorescence were unchanged. These results show that the glycation of long-lived proteins can be decreased by improved glycemic control, but suggest that once cumulative damage to collagen by browning and oxidation reactions has occurred, it may not be readily reversed. Thus, in diabetic patients, institution and maintenance of good glycemic control at any time could potentially limit the extent of subsequent long-term damage to proteins by glycation and oxidation reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The clinical impression that pre-existing diabetes exacerbates radiation injury to the retinal vasculature was studied in STZ diabetic rats. Half of 2 groups of streptozotocin (STZ)-induced diabetic rats and 1 group of normal animals had their right eyes irradiated with 1000 cGy of 90 KVP x-rays. The prevalence of acellular capillaries in trypsin digests of the retinal vasculature was quantified for each of the 6 groups of animals at 6.5 months post-irradiation. The prevalence of acellular capillaries in both non-irradiated diabetic groups was significantly higher than in controls while the irradiated animals in each of the three main categories showed a statistically significant increase compared to their non-irradiated equivalents. However, the net increase in acellular capillaries following irradiation was much greater in rats with an 8 month term of pre-existing diabetes (180%) than in those which had only been diabetic for 3 months (36%). The results of this study suggest a synergistic relationship between pre-existing diabetes and ionising radiation in the development of retinal vasculopathy, and that the potentiation of the vascular damage is dependent on the duration of diabetes prior to radiation exposure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clinical, pathological and experimental studies of radiation retinopathy confirm that the primary vascular event is endothelial cell loss and capillary closure. Pericytes are less susceptible, but typically atrophy as the capillaries become non-functional. The immediate effects of radiation reflect interphase and early mitotic death of injured endothelial cells, whereas later changes may be attributed to delayed mitotic death of compromised endothelial cells as they attempt division in the ordinary course of repair and replacement. Capillary occlusion leads to the formation of dilated capillary collaterals which may remain serviceable and competent for years. Microaneurysms develop in acellular and poorly supported capillaries, predominantly on the arterial side of the circulation and adjacent to regions of poorly perfused retina. Alterations in haemodynamics produce large telangiectatic-like channels which, typically develop a thick collagenous adventitia and may become fenestrated. Limited capillary regeneration occurs, usually evident as recanalisation of arterioles or venules by new capillaries. Vitreo-retinal neovascularisation may occur where retinal ischaemia is widespread. Radiation produces an exaggerated vasculopathy in patients with diabetes mellitus, and five month streptozotocin-induced diabetic rats develop a severe ischaemic retinopathy with vitreoretinal neovascularisation when exposed to 1500 cGy of radiation. Later photocoagulation is useful in containing or reversing microvascular incompetence and vasoproliferation in some patients with advanced radiation retinopathy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial variability of bias-dependent electrochemical processes on a (La0.5Sr0.5)(2)CoO4 +/- modified (LaxSr1-x)CoO3- surface is studied using first-order reversal curve method in electrochemical strain microscopy (ESM). The oxygen reduction/evolution reaction (ORR/OER) is activated at voltages as low as 3-4 V with respect to bottom electrode. The degree of bias-induced transformation as quantified by ESM hysteresis loop area increases with applied bias. The variability of electrochemical activity is explored using correlation analysis and the ORR/OER is shown to be activated in grains at relatively low biases, but the final reaction rate is relatively small. At the same time, at grain boundaries, the onset of reaction process corresponds to larger voltages, but limiting reactivity is much higher. The reaction mechanism in ESM of mixed electronic-ionic conductor is further analyzed. These studies both establish the framework for probing bias-dependent electrochemical processes in solids and demonstrate rich spectrum of electrochemical transformations underpinning catalytic activity in cobaltites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tryptophyllins are a group of small (4–14 amino acids), heterogenous peptides, mostly from the skins of hylid frogs from the genera, Phyllomedusa and Litoria. To date, more than forty TPHs have been discovered in species from these two genera. Here, we describe the identification of a novel tryptophyllin type 3 peptide, PhT-3, from the extracts of skin of the orange-legged monkey frog, Phyllomedusa hypochondrialis, and molecular cloning of its precursor-encoding cDNA from a cDNA library constructed from the same skin sample. Full primary structural characterization was achieved using a combination of direct Edman degradation, mass spectrometry and deduction from cloned skin-derived cDNA. The open-reading frame of the precursor cDNA was found to consist of 63 amino acid residues. The mature peptide arising from this precursor contains a post-translationally modified N-terminal pyroglutamate (pGlu) residue, formed from acid-mediated cyclization of an N-terminal Gln (Q) residue, and with the structure: pGlu-Asp-Lys-Pro-Phe-Trp-Pro-Pro-Pro-Ile-Tyr-Pro-Met. Pharmacological assessment of a synthetic replicate of this peptide on phenylephrine preconstricted rat tail artery segments, revealed a reduction in relaxation induced by bradykinin. PhT-3 was also found to mediate antiproliferative effects on human prostate cancer cell lines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bradykinin-related peptides (BRPs) are significant components of the defensive skin secretions of many anuran amphibians, and these secretions represent the source of the most diverse spectrum of such peptides so far encountered in nature. Of the many families of bioactive peptides that have been identified from this source, the BRPs uniquely appear to represent homologues of counterparts that have specific distributions and receptor targets within discrete vertebrate taxa, ranging from fishes through mammals. Their broad spectra of actions, including pain and inflammation induction and smooth muscle effects, make these peptides ideal weapons in predator deterrence. Here, we describe a novel 12-mer BRP (RVALPPGFTPLR-RVAL-(L1, T6, L8)-bradykinin) from the skin secretion of the Fujian large-headed frog (Limnonectes fujianensis). The C-terminal 9 residues of this BRP (-LPPGFTPLR) exhibit three amino acid substitutions (L/R at Position 1, T/S at Position 6 and L/F at Position 8) when compared to canonical mammalian bradykinin (BK), but are identical to the kinin sequence present within the cloned kininogen-2 from the Chinese soft-shelled turtle (Pelodiscus sinensis) and differ from that encoded by kininogen-2 of the Tibetan ground tit (Pseudopodoces humilis) at just a single site (F/L at Position 8). These data would imply that the novel BRP is an amphibian defensive agent against predation by sympatric turtles and also that the primary structure of the avian BK, ornithokinin (RPPGFTPLR), is not invariant within this taxon. Synthetic RVAL-(L1, T6, L8)-bradykinin was found to be an antagonist of BK-induced rat tail artery smooth muscle relaxation acting via the B2-receptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA damage (caused by direct cellular exposure and bystander signaling) and the complex pathways involved in its repair are critical events underpinning cellular and tissue response following radiation exposures. There are limited data addressing the dynamics of DNA damage induction and repair in the skin particularly in areas not directly exposed. Here we investigate the mechanisms regulating DNA damage, repair, intracellular signalling and their impact on premature differentiation and development of inflammatory-like response in the irradiated and surrounding areas of a 3D organotypic skin model. Following localized low-LET irradiation (225 kVp X-rays), low levels of 53BP1 foci were observed in the 3D model (3.8±0.28 foci/Gy/cell) with foci persisting and increasing in size up to 48 h post irradiation. In contrast, in cell monolayers 14.2±0.6 foci/Gy/cell and biphasic repair kinetics with repair completed before 24 h was observed. These differences are linked to differences in cellular status with variable level of p21 driving apoptotic signalling in 2D and accelerated differentiation in both the directly irradiated and bystander areas of the 3D model. The signalling pathways utilized by irradiated keratinocytes to induce DNA damage in non-exposed areas of the skin involved the NF-κB transcription factor and its downstream target COX-2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although, ionizing radiation (IR) has been implicated to cause stress in endoplasmic reticulum (ER), how ER stress signaling and major ER stress sensors modulate cellular response to IR is unclear. Protein kinase RNA-like endoplasmic reticulum kinase (PERK) is an ER transmembrane protein which initiates unfolded protein response (UPR) or ER stress signaling when ER homeostasis is disturbed. Here, we report that down-regulation of PERK resulted in increased clonogenic survival, enhanced DNA repair and reduced apoptosis in irradiated cancer cells. Our study demonstrated that PERK has a role in sensitizing cancer cells to IR. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-DNA targeted effects of ionising radiation, which include genomic instability, and a variety of bystander effects including abscopal effects and bystander mediated adaptive response, have raised concerns about the magnitude of low-dose radiation risk. Genomic instability, bystander effects and adaptive responses are powered by fundamental, but not clearly understood systems that maintain tissue homeostasis. Despite excellent research in this field by various groups, there are still gaps in our understandfng of the likely mechanisms associated with non-DNA targeted effects, particularly with respect to systemic (human health) consequences at low and intermediate doses of ionising radiation. Other outstanding questions include links between the different non-targeted responses and the variations. in response observed between individuals and cell lines, possibly a function of genetic background. Furthermore, it is still not known what the initial target and early interactions in cells are that give rise to non-targeted responses in neighbouring or descendant cells. This paper provides a commentary on the current state of the field as a result of the non-targeted effects of ionising radiation (NOTE) Integrated Project funded by the European Union. Here we critically examine the evidence for non-targeted effects, discuss apparently contradictory results and consider implications for low-dose radiation health effects. (C) 2012 Elsevier B.V. All rights reserved.