140 resultados para Potter, Beattie


Relevância:

10.00% 10.00%

Publicador:

Resumo:

<p>Hematopoietic chimerism was analyzed in serial bone marrow samples taken from 28 children following T-cell depleted unrelated donor bone marrow transplants (UD BMT) for acute lymphoblastic leukemia (ALL). Chimeric status was determined by polymerase chain reaction (PCR) of simple tandem repeat (STR) sequences (maximal sensitivity, 0.1%). At least two serial samples were examined in 23 patients. Of these, two had evidence of complete donor engraftment at all times and eight showed stable low level mixed chimerism (MC) (&lt;1% recipient hematopoiesis). All 10 of these patients remain in remission with a minimum follow-up of 24 months. By contrast, 13 patients demonstrated a progressive return of recipient hematopoiesis. Five of these relapsed (4 to 9 months post BMT), one died of cytomegalovirus pneumonitis and seven remain in remission with a minimum follow-up of 24 months. Five children were excluded from serial analysis as two serial samples were not collected before either relapse (3) or graft rejection (2). We conclude that as with sibling transplants, ex vivo T depleted UD BMT in children with ALL is associated with a high incidence of MC. Stable donor engraftment and low level MC always correlated with continued remission. However, detection of a progressive return of recipient cells did not universally correlate with relapse, but highlighted those patients at greatest risk. Serial chimerism analysis by PCR of STRs provides a rapid and simple screening technique for the detection of relapse and the identification of patients with progressive MC who might benefit from detailed molecular analysis for minimal residual disease following matched volunteer UD BMT for childhood ALL.</p>

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Spatially localized duration compression of a briefly presented moving stimulus following adaptation in the same location is taken as evidence for modality-specific neural timing mechanisms. <br/><br/>Aims: The present study used random dot motion stimuli to investigate where these mechanisms may be located. <br/><br/>Method: Experiment 1 measured duration compression of the test stimulus as a function of adaptor speed and revealed that duration compression is speed tuned. These data were then used to make predictions of duration compression responses for various models which were tested in experiment 2. Here a mixed-speed adaptor stimulus was used with duration compression being measured as a function of the adaptorâs â˜speed notchâ (the removal of a central band from the speed range). <br/><br/>Results: The results were consistent with a local-mean model. <br/><br/>Conclusions: Local-motion mechanisms are involved in duration perception of brief events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project. © 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurately encoding the duration and temporal order of events is essential for survival and important to everyday activities, from holding conversations to driving in fast flowing traffic. Although there is a growing body of evidence that the timing of brief events (&lt; 1s) is encoded by modality-specific mechanisms, it is not clear how such mechanisms register event duration. One approach gaining traction is a channel-based model; this envisages narrowly-tuned, overlapping timing mechanisms that respond preferentially to different durations. The channel-based model predicts that adapting to a given event duration will result in overestimating and underestimating the duration of longer and shorter events, respectively. We tested the model by having observers judge the duration of a brief (600ms) visual test stimulus following adaptation to longer (860ms) and shorter (340ms) stimulus durations. The channel-based model predicts perceived duration compression of the test stimulus in the former condition and perceived duration expansion in the latter condition. Duration compression occurred in both conditions, suggesting that the channel-based model does not adequately account for perceived duration of visual events.