175 resultados para PARASITIC WASP


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molluscan FMRFamide and two recently discovered platyhelminth FMRFamide-related peptides (FaRPs), GNFFRFamide from the cestode Moniezia expansa and RYIRFamide from the terrestrial turbellarian Artioposthia triangulata, cause dose-dependent contractions of individual muscle fibres from Schistosoma mansoni in vitro. The most potent FaRP tested was the turbellarian peptide RYIRFamide, which produced a concentration-dependent effect between 10(-9) and 10(-7) M. FMRFamide and GNFFRFamide were less potent, inducing contractions between 10(-8)-10(-6) M and 10(-7)-10(-5) M respectively. The contractile effect of each of these peptides was blocked by the presence of 1 mu M FMR-D-Famide. FMRF free acid did not elicit contraction of the muscle fibres. The FaRP-induced contractions did not occur if the Ca2+ was omitted and 0.5 mu M EGTA. was added to the extracellular medium. The FaRP-induced contractions were not blocked by the Ca2+ channel blockers nicardipine, verapamil or diltiazem, although high Kf-induced contractions of these fibres were blocked by nicardipine. These data indicate the presence of FaRP receptors on schistosome muscle fibres and demonstrate their ability to mediate muscle contraction. The action of these endogenous flatworm peptides on schistosome muscle is the first demonstration of a direct excitatory effect of any putative neurotransmitter on the muscle of a flatworm, and establishes a role for FaRPs in neuromuscular transmission in trematodes. In addition, it provides the first evidence that the peptidergic nervous system is a rational target for chemotherapeutic attack in parasitic platyhelmiths.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Available primary structural information suggests that the FMRFamide-related peptides (FaRPs) from parasitic and free-living nematodes are different, and that free-living forms may not represent appropriate models for the study of the neurochemistry of parasitic forms in the laboratory. However, here we report the isolation and unequivocal identification of AF2 (originally isolated from the parasite, Ascaris suum) from acidified alcoholic extracts of the free-living species, Panagrellus redivivus. While reverse-phase HPLC analysis of extracts revealed FMRFamide-immunoreactivity to be highly heterogeneous, AF2 was the predominant FMRFamide-immunoreactive peptide present (at least 26 pmol/g wet weight of worms). This peptide was also the major immunoreactant identified by an antiserum raised to the conserved C-terminal hexapeptide amide of mammalian pancreatic polypeptide (PP), which has been used previously to isolate neuropeptide F (NPF). These observations were confirmed by radioimmunoassay and chromatographic fractionation of an acidified alcoholic extract of A. suum heads. The FMRFamide-related peptides present in a nematode extract may be highly dependent on the extraction medium employed, and these data would suggest that this complement of neuropeptides may not be as different between parasitic and free-living nematodes as initial studies have suggested. Finally, all of the evidence suggests that NPF is not present in nematodes and that the PP-immunoreactant previously demonstrated immunochemically is probably AF2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using an indirect immunofluorescence technique interfaced with confocal scanning laser microscopy, whole-mount preparations of three genera of marine trematode larvae, Cryntocotyle lingua, Cercaria emasculans and Himasthla leptosoma, were screened for 5-hydroxytryptamine (5-HT) and selected neuropeptide immunoreactivities (IRs). IRs for pancreatic polypeptide (PP), peptide YY (PYY) and FMRFamide were found in the central nervous systems of the three species of cercariae, immunostaining the paired ganglia and central commissure and the longitudinal nerve cords, with slight differences in both distribution and intensity of IRs being observed for the different antisera used. PP, PYY and FMRFamide IRs were evident in both central and peripheral components of the nervous system in the rediae of C. lingua. 5-HT IR was confined to the peripheral nervous systems of the cercariae of C. emasculans and the rediae of C. lingua, appearing in the form of a network of immunoreactive fibres and associated large cell bodies. A moderate substance P IR was observed in the nervous system of the cercariae of C. lingua. The patterns of immunostaining described were compared with those obtained using antiserum directed to the C-terminal decapeptide amide of neuropeptide F (NPF), a native parasitic peptide from the cestode Moniezia expansa. Results demonstrated that serotoninergic and peptidergic components were present in the nervous systems of all of the trematode larvae studied and that some, if not all, of the IR for PP. PYY and FMRFamide was due to the presence of a trematode NPF homologue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An electron immunogold-labeling technique was used in conjunction with a post-embedding procedure to demonstrate for the first time the ultrastructural distribution of the parasitic platyhelminth neuropeptide, neuropeptide F (NPF), in the nervous system of the cestode Moniezia expansa. Two axon types, distinguished by their populations of different-sized electron-dense vesicles, were identified. Immunogold labeling demonstrated an apparent homogeneity of PP, FMRFamide and NPF (M. expansa) antigenic sites throughout the larger dense-cored vesicles within the central nervous system. Triple labeling clearly demonstrated the co-localisation of immunoreactivities (IR) for NPF, PP and FMRFamide within the same dense-cored vesicles. The presence of NPF-IR within the vesicles occupying the perikaryon of the neuronal cell body indicated that the peptides had undergone post-translational C-terminal amidation prior to entering the axon. Antigen pre-absorption experiments using NPF prevented labeling with either PP or FMRFamide antisera, and the failure of these antisera to block NPF-IR supports the view that some, if not all, of the PP/FMRFamide-IR is due to NPF-like peptides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immunocytochemical techniques used in conjunction with confocal scanning laser microscopy (CSLM) and electron microscopy have been used to demonstrate, for the first time, the distribution of the parasitic platyhelminth neuropeptide, neuropeptide F (NPF) in the cestode, Moniezia expansa. Antisera were raised to intact NPF(1-39) and to the C-terminal decapeptide of NPF(30-39). These antisera were characterized and validated for use in both immunocytochemistry and radioimmunoassay (RIA). NPF immunoreactivity (IR) was detected using both antisera throughout all of the major components of the central and peripheral nervous systems of the worm. The pattern of NPF-IR was found to mirror the IR obtained using a C-terminally directed pancreatic polypeptide (PP) antiserum and FMRFamide antisera; blocking studies using these antisera revealed that FMRFamide and PP antisera cross-react with NPF(M. expansa). RIA of acid-alcohol extracts of the worm measured 114 ng/g using the C-terminal NPF antiserum and 56 ng/g using the whole-molecule-directed antiserum. While the C-terminally-directed NPF antiserum cross-reacts with NPF-related peptides from other invertebrates, the whole-molecule-directed NPF antiserum is specific for NPF(M. expansa). The C-terminal NPF antiserum has potential for use in the identification and purification of NPF analogues from other platyhelminth parasites.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have recently isolated a cDNA (SKV1.1) encoding a Shakei-related K+ channel from the human parasitic trematode Schistosoma mansoni. In order to better understand the functions of SKv1.1 protein, the distribution of SKv1.1 protein in adult S. mansoni was analyzed by immunohistochemistry using a region-specific antibody. SKV1.1 proteins were widely expressed in the nervous and muscular systems. The strongest immunoreactivity (IR) was observed in the nervous system of both male and female. In the nervous system, IR for SKv1.1 proteins was localized in cell bodies and nerve fibers of the anterior ganglia, the central commissure, and the main nerve cords. IR was also observed in the dorsal and the ventral peripheral nerve nets, fine nerve fibers entering into a variety of structures such as the dorsal tubercles, longitudinal and ventral muscle fibers, and oral and ventral suckers. In the muscular system, SKv1.1 proteins were localized to the longitudinal, circular, and ventral muscle fibers of male as well as in isolated muscle fibers where native A-type K+ currents were measured. Moderate IR was also seen in a large number of cell bodies in the parenchyma. These results indicate that SKv1.1 protein may play an important role in the regulation of the excitability of neurons and muscle cells of S. mansoni. (C) 1995 Academic Press, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fasciolosis is a parasitic infection by the liver fluke Fasciola hepatica, which costs the global agricultural community over US $2 billion per year. Its prevalence is rising due to factors such as climate change and drug resistance. ATP-dependent membrane transporters are considered good potential drug targets as they are essential for cellular processes and are in an exposed, accessible position in the cell. Immunolocalisation studies demonstrated that a plasma membrane calcium ATPase (PMCA) was localised to the parenchymal tissue in F. hepatica. The coding sequence for a F. hepatica PMCA (FhPMCA) has been obtained. This sequence encodes a 1,163 amino acid protein which contains motifs which are commonly conserved in PMCAs. Molecular modelling predicted that the protein has 10 transmembrane segments which include a potential calcium ion binding site and phosphorylation motif. FhPMCA interacts with the calmodulin-like protein FhCaM1, but not the related proteins FhCaM2 or FhCaM3, in a calcium-ion dependent manner. This interaction occurs through a region in the C-terminal region of FhPMCA which most likely adopts an a-helical conformation. When FhPMCA was heterologously expressed in a budding yeast strain deleted for its PMCA (Pmc1p), it restored viability. Microsomes prepared from these yeast cells had calcium ion stimulated ATPase activity which was inhibited by the known PMCA inhibitors, bisphenol and eosin. The potential of FhPMCA as a new drug target is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ProSafeBeef project studied the prevalence of residues of anthelmintic drugs used to control parasitic worms and fluke in beef cattle in Ireland. Injured (casualty) cattle may enter the human food chain under certain conditions, verified by an attending veterinarian and the livestock keeper. An analytical survey was conducted to determine if muscle from casualty cattle contained a higher prevalence of anthelmintic drug residues than healthy (full slaughter weight) cattle as a result of possible non-observance of complete drug withdrawal periods. A validated analytical method based on matrix solid-phase dispersive extraction (QuEChERS) and ultra-performance liquid chromatography-tandem mass spectrometry was used to quantify 37 anthelmintic drugs and metabolites in muscle (assay decision limits, CCa, 0.15-10.2 µg kg -1). Of 199 control samples of beef purchased in Irish shops, 7% contained detectable anthelmintic drug residues but all were compliant with European Union Maximum Residue Limits (MRL). Of 305 muscle samples from injured cattle submitted to abattoirs in Northern Ireland, 17% contained detectable residues and 2% were non-compliant (containing either residues at concentrations above the MRL or residues of a compound unlicensed for use in cattle). Closantel and ivermectin were the most common residues, but a wider range of drugs was detected in muscle of casualty cattle than in retail beef. These data suggest that specific targeting of casualty cattle for testing for anthelmintic residues may be warranted in a manner similar to the targeted testing for antimicrobial compounds often applied in European National Residues Surveillance Schemes. © 2012 Copyright Taylor and Francis Group, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anthelmintic drugs are widely used to control parasitic infections in cattle. The ProSafeBeef project addressed the need for data on the exposure of European consumers of beef to potentially harmful drug residues. A novel analytical method based on matrix solid-phase dispersive extraction and ultra-performance liquid chromatography-tandem mass spectrometry was validated for 37 anthelmintic drugs and metabolites in muscle (assay decision limits, CCa, = 0.15-10.2 µg kg -1). Seven European countries (France, Spain, Slovenia, Ireland, Italy, Belgium and Portugal) participated in a survey of retail beef purchased in local shops. Of 1061 beef samples analysed, 26 (2.45%) contained detectable residues of anthelmintic drugs (0.2-171 µg kg -1), none above its European Union maximum residue limit (MRL) or action level. Residues detected included closantel, levamisole, doramectin, eprinomectin, moxidectin, ivermectin, albendazole and rafoxanide. In a risk assessment applied to mean residue concentrations across all samples, observed residues accounted for less than 0.1% of the MRL for each compound. An exposure assessment based on the consumption of meat at the 99th percentile of consumption of adults in 14 European countries demonstrated that beef accounted for less than 0.02% of the acceptable daily intake for each compound in each country. This study is the first of its kind to apply such a risk-based approach to an extensive multi-residue survey of veterinary drug residues in food. It has demonstrated that the risk of exposure of the European consumer to anthelmintic drug residues in beef is negligible, indicating that regulation and monitoring is having the desired effect of limiting residues to non-hazardous concentrations. © 2012 Copyright Taylor and Francis Group, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anthelmintic drugs are widely used for treatment of parasitic worms in livestock, but little is known about the stability of their residues in food under conventional cooking conditions. As part of the European Commissionfunded research project ProSafeBeef, cattle were medicated with commercially available anthelmintic preparations, comprising 11 active ingredients (corresponding to 21 marker residues). Incurred meat and liver were cooked by roasting (40 min at 190°C) or shallow frying (muscle 8-12 min, liver 14-19 min) in a domestic kitchen. Raw and cooked tissues and expressed juices were analysed using a novel multi-residue dispersive solid-phase extraction method (QuEChERS) coupled with ultra-performance liquid chromatography-tandem mass spectrometry. After correction for sample weight changes during cooking, no major losses were observed for residues of oxyclozanide, clorsulon, closantel, ivermectin, albendazole, mebendazole or fenbendazole. However, significant losses were observed for nitroxynil (78% in fried muscle, 96% in roast muscle), levamisole (11% in fried muscle, 42% in fried liver), rafoxanide (17% in fried muscle, 18% in roast muscle) and triclabendazole (23% in fried liver, 47% in roast muscle). Migration of residues from muscle into expressed cooking juices varied between drugs, constituting 0% to 17% (levamisole) of total residues remaining after cooking. With the exception of nitroxynil, residues of anthelmintic drugs were generally resistant to degradation during roasting and shallow frying. Conventional cooking cannot, therefore, be considered a safeguard against ingestion of residues of anthelmintic veterinary drugs in beef. © 2011 Taylor & Francis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The excretory-secretory (ES) proteins of nematode parasites are of major interest as they function at the host-parasite interface and are likely to have roles crucial for successful parasitism. Furthermore, the ES proteins of intracellular nematodes such as Trichinella spiralis may also function to regulate gene expression in the host cell. In a recent proteomic analysis we identified a novel secreted cystatin-like protein from T. spiralis L1 muscle larva. Here we show that the protein, MCD-1 (multi-cystatin-like domain protein 1), contains three repeating cystatin-like domains and analysis of the mcd-1 gene structure suggests that the repeated domains arose from duplication of an ancestral cystatin gene. Cystatins are a diverse group of cysteine protease inhibitors and those secreted by parasitic nematodes are important immuno-modulatory factors. The cystatin superfamily also includes cystatin-like proteins that have no cysteine protease inhibitory activity. A recombinant MCD-1 protein expressed as a GST-fusion protein in Escherichia coli failed to inhibit papain in vitro suggesting that the T. spiralis protein is a new member of the non-inhibitory cystatin-related proteins. MCD-1 secreted from T. spiralis exists as high- and low-molecular weight isoforms and we show that a recombinant MCD-1 protein secreted by HeLa cells undergoes pH-dependent processing that may result in the release of individual cystatin-like domains. Furthermore, we found that mcd-1 gene expression is largely restricted to intracellular stages with the highest levels of expression in the adult worms. It is likely that the major role of the protein is during the intestinal stage of T. spiralis infections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Restrictions on nematicide usage underscore the need for novel control strategies for plant pathogenic nematodes such as Globodera pallida (potato cyst nematode) that impose a significant economic burden on plant cultivation activities. The nematode neuropeptide signalling system is an attractive resource for novel control targets as it plays a critical role in sensory and motor functions. The FMRFamide-like peptides (FLPs) form the largest and most diverse family of neuropeptides in invertebrates, and are structurally conserved across nematode species, highlighting the utility of the FLPergic system as a broad-spectrum control target. flp-32 is expressed widely across nematode species. This study investigates the role of flp-32 in G. pallida and shows that: (i) Gp-flp-32 encodes the peptide AMRNALVRFamide; (ii) Gp-flp-32 is expressed in the brain and ventral nerve cord of G. pallida; (iii) migration rate increases in Gp-flp-32-silenced worms; (iv) the ability of G. pallida to infect potato plant root systems is enhanced in Gp-flp-32-silenced worms; (v) a novel putative Gp-flp-32 receptor (Gp-flp-32R) is expressed in G. pallida; and, (vi) Gp-flp-32R silenced worms also display an increase in migration rate. This work demonstrates that Gp30 flp-32 plays an intrinsic role in the modulation of locomotory behaviour in G. pallida, and putatively interacts with at least one novel G-protein coupled receptor (Gp-flp-32R). This is the first functional characterisation of a parasitic nematode FLP-GPCR. © 2013 Atkinson et al.