220 resultados para Oxidação eletrolítica assistida por plasmas


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temporally resolved electron density measurements of solar flare plasmas are presented using data from the EUV Variability Experiment (EVE) on board the Solar Dynamics Observatory. The EVE spectral range contains emission lines formed between 104 and 107 K, including transitions from highly ionized iron (gsim10 MK). Using three density-sensitive Fe XXI ratios, peak electron densities of 1011.2-1012.1 cm–3 were found during four X-class flares. While previous measurements of densities at such high temperatures were made at only one point during a flaring event, EVE now allows the temporal evolution of these high-temperature densities to be determined at 10 s cadence. A comparison with GOES data revealed that the peak of the density time profiles for each line ratio correlated well with that of the emission measure time profile for each of the events studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The propagation of ion acoustic shocks in nonthermal plasmas is investigated, both analytically and numerically. An unmagnetized collisionless electron-ion plasma is considered, featuring a superthermal (non-Maxwellian) electron distribution, which is modeled by a ?-(kappa) distribution function. Adopting a multiscale approach, it is shown that the dynamics of low-amplitude shocks is modeled by a hybrid Korteweg-de Vries-Burgers (KdVB) equation, in which the nonlinear and dispersion coefficients are functions of the ? parameter, while the dissipative coefficient is a linear function of the ion viscosity. All relevant shock parameters are shown to depend on ?: higher deviations from a pure Maxwellian behavior induce shocks which are narrower, faster, and of larger amplitude. The stability profile of the kink-shaped solutions of the KdVB equation against external perturbations is investigated. The spatial profile of the shocks is found to depend upon the dispersion and the dissipation term, and the role of the interplay between dispersion and dissipation is elucidated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The linear and nonlinear properties of low-frequency electrostatic excitations of charged dust particles (or defects) in a dense collisionless, unmagnetized Thomas-Fermi plasma are investigated. A fully ionized three-component model plasma consisting of electrons, ions, and negatively charged massive dust grains is considered. Electrons and ions are assumed to be in a degenerate quantum state, obeying the Thomas-Fermi density distribution, whereas the inertial dust component is described by a set of classical fluid equations. Considering large-amplitude stationary profile travelling-waves in a moving reference frame, the fluid evolution equations are reduced to a pseudo-energy-balance equation, involving a Sagdeev-type potential function. The analysis describes the dynamics of supersonic dust-acoustic solitary waves in Thomas-Fermi plasmas, and provides exact predictions for their dynamical characteristics, whose dependence on relevant parameters (namely, the ion-to-electron Fermi temperature ratio, and the dust concentration) is investigated. An alternative route is also adopted, by assuming weakly varying small-amplitude disturbances off equilibrium, and then adopting a multiscale perturbation technique to derive a Korteweg–de Vries equation for the electrostatic potential, and finally solving in terms for electric potential pulses (electrostatic solitons). A critical comparison between the two methods reveals that they agree exactly in the small-amplitude, weakly superacoustic limit. The dust concentration (Havnes) parameter h = Zd0nd0/ne0 affects the propagation characteristics by modifying the phase speed, as well as the electron/ion Fermi temperatures. Our results aim at elucidating the characteristics of electrostatic excitations in dust-contaminated dense plasmas, e.g., in metallic electronic devices, and also arguably in supernova environments, where charged dust defects may occur in the quantum plasma regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The linear and nonlinear properties of large-amplitude electron-acoustic waves are investigated in a magnetized plasma comprising two distinct electron populations (hot and cold) and immobile ions. The hot electrons are assumed to be in a non-Maxwellian state, characterized by an excess of superthermal particles, here modeled by a kappa-type long-tailed distribution function. Waves are assumed to propagate obliquely to the ambient magnetic field. Two types of electrostatic modes are shown to exist in the linear regime, and their properties are briefly analyzed. A nonlinear pseudopotential-type analysis reveals the existence of large-amplitude electrostatic solitary waves and allows for an investigation of their propagation characteristics and existence domain, in terms of the soliton speed (Mach number). The effects of the key plasma configuration parameters, namely the superthermality index and the cold electron density, on the soliton characteristics and existence domain, are studied. The role of obliqueness and magnetic field is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an investigation of coupled nonlinear electromagnetic modes in an electron-positron plasma by using the well established technique of Poincaré surface of section plots. A variety of nonlinear solutions corresponding to interesting coupled electrostatic-electromagnetic modes sustainable in electron-positron plasmas is shown on the Poincaré section. A special class of localized solitary wave solution is identified along a separatrix curve and its importance in the context of electromagnetic wave propagation in an electron-positron plasma is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occurrence of amplitude-modulated electrostatic and electromagnetic
wavepackets in pair plasmas is investigated. A static additional charged background species is considered, accounting for dust defects or for heavy ion
presence in the background. Relying on a two-fluid description, a nonlinear
Schrodinger type evolution equation is obtained and analyzed, in terms of the
slow dynamics of the wave amplitude. Exact envelope excitations are obtained,
modelling envelope pulses or holes, and their characteristics are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A brief review of the occurrence of amplitude modulated structures in space and laboratory plasmas is provided, followed by a theoretical analysis of the mechanism of carrier wave (self-) interaction, with respect to electrostatic plasma modes. A generic collisionless unmagnetized fluid model is employed. Both cold-(zero-temperature) and warm-(finite temperature) fluid descriptions are considered and compared. The weakly nonlinear oscillation regime is investigated by applying a multiple scale (reductive perturbation) technique and a Nonlinear Schrödinger Equation (NLSE) is obtained, describing the evolution of the slowly varying wave amplitude in time and space. The amplitude’s stability profile reveals the possibility of modulational instability to occur under the influence of external perturbations. The NLSE admits exact localized envelope (solitary wave) solutions of bright (pulses) or dark (holes, voids) type, whose characteristics depend on intrinsic plasma parameters. The role of perturbation obliqueness (with respect to the propagation direction), finite temperature and — possibly — defect (dust) concentration is explicitly considered. The relevance of this description with respect to known electron-ion (e-i) as well as dusty (complex) plasma modes is briefly discussed. © 2004 American Institute of Physics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real plasmas are often caracterized by the presence of excess energetic particle populations, resulting in a long-tailed non-Maxwellian distribution. In Space plasma physics, this phenomenon is usually modelled via a kappa-type distribution. This presentation is dedicated to an investigation, from first principles, of the effect of superthermality on the characteristics of dusty plasma modes. We employ a kappa distribution function to model the superthermality of the background components (electrons and/or ions). Background superthermality is shown to modify the charge screening mechanism in dusty plasmas, thus affecting the linear dispersion laws of both low- and higher frequency DP modes substantially. Various experimentally observed effects may thus be interpreted as manifestations of superthermality. Focusing on the features of nonlinear excitations (solitons) as they occur in different dusty plasma modes, we investigate the role of superthermality in their propagation dynamics (existence laws, stability profile) and characteristics (geometry).