152 resultados para Oscillator strengths
Resumo:
We address the presence of nondistillable (bound) entanglement in natural many-body systems. In particular, we consider standard harmonic and spin-1/2 chains, at thermal equilibrium and characterized by few interaction parameters. The existence of bound entanglement is addressed by calculating explicitly the negativity of entanglement for different partitions. This allows us to individuate a range of temperatures for which no entanglement can be distilled by means of local operations, despite the system being globally entangled. We discuss how the appearance of bound entanglement can be linked to entanglement-area laws, typical of these systems. Various types of interactions are explored, showing that the presence of bound entanglement is an intrinsic feature of these systems. In the harmonic case, we analytically prove that thermal bound entanglement persists for systems composed by an arbitrary number of particles. Our results strongly suggest the existence of bound entangled states in the macroscopic limit also for spin-1/2 systems.
Resumo:
We introduce a scheme to reconstruct arbitrary states of networks composed of quantum oscillators-e. g., the motionalstate of trapped ions or the radiation state of coupled cavities. The scheme involves minimal resources and minimal access, in the sense that it (i) requires only the interaction between a one-qubit probe and a single node of the network; (ii) provides the Weyl characteristic function of the network directly from the data, avoiding any tomographic transformation; (iii) involves the tuning of only one coupling parameter. In addition, we show that a number of quantum properties can be extracted without full reconstruction of the state. The scheme can be used for probing quantum simulations of anharmonic many-body systems and quantum computations with continuous variables. Experimental implementation with trapped ions is also discussed and shown to be within reach of current technology.
Resumo:
We consider a system composed of a qubit interacting with a quartic (undriven) nonlinear oscillator (NLO) through a conditional displacement Hamiltonian. We show that even a modest nonlinearity can enhance and stabilize the quantum entanglement dynamically generated between the qubit and the NLO. In contrast to the linear case, in which the entanglement is known to oscillate periodically between zero and its maximal value, the nonlinearity suppresses the dynamical decay of the entanglement once it is established. While the entanglement generation is due to the conditional displacements, as noted in several works before, the suppression of its decay is related to the presence of squeezing and other complex processes induced by two- and four-phonon interactions. Finally, we solve the respective Markovian master equation, showing that the previous features are preserved also when the system is open.
Resumo:
This paper will consider the inter-relationship of a number of overlapping disciplinary theoretical concepts relevant to a strengths-based orientation, including well-being, salutogenesis, sense of coherence, quality of life and resilience. Psychological trauma will be referenced and the current evidence base for interventions with children and young people outlined and critiqued. The relational impact of trauma on family relationships is emphasised, providing a rationale for systemic psychotherapeutic interventions as part of a holistic approach to managing the effects of trauma. The congruence between second-order systemic psychotherapy models and a strengths-based philosophy is noted, with particular reference to solution-focused brief therapy and narrative therapy, and illustrated; via a description of the process of helping someone move from a victim position to a survivor identity using solution-focused brief therapy, and through a case example applying a narrative therapy approach to a teenage boy who suffered a serious assault. The benefits of a strength-based approach to psychological trauma for the clients and therapists will be summarised and a number of potential pitfalls articulated.
Resumo:
Context: Mg VIII emission lines are observed in a range of astronomical objects such as the Sun, other cool stars and in the coronal line region of Seyfert galaxies. Under coronal conditions Mg VIII emits strongly in the extreme ultraviolet (EUV) and soft X-ray spectral regions which makes it an ideal ion for plasma diagnostics.
Aims. Two theoretical atomic models, consisting of 125 fine structure levels, are developed for the Mg VIII ion. The 125 levels arise from the 2s(2)2p, 2s(2)p2, 2p(3), 2s(2)3s, 2s(2)3p, 2s(2)3d, 2s2p3s, 2s2p3p, 2s2p3d, 2p(2)3s, 2p(2)3p and 2p(2)3d configurations. Electron impact excitation collision strengths and radiative transition probabilities are calculated for both Mg VIII models, compared with existing data, and the best model selected to generate a set of theoretical emission line intensities. The EUV lines, covering 312-790 angstrom, are compared with existing solar spectra (SERTS-89 and SUMER), while the soft X-ray transitions (69-97 angstrom) are examined for potential density diagnostic line ratios and also compared with the limited available solar and stellar observational data.
Methods. The R-matrix codes Breit-Pauli RMATRXI and RMATRXII are utilised, along with the PSTGF code, to calculate the collision strengths for two Mg VIII models. Collision strengths are averaged over a Maxwellian distribution to produce the corresponding effective collision strengths for use in astrophysical applications. Transition probabilities are also calculated using the CIV3 atomic structure code. The best data are then incorporated into the modelling code CLOUDY and line intensities generated for a range of electron temperatures and densities appropriate to solar and stellar coronal plasmas.
Results. The present effective collision strengths are compared with two previous calculations. Good levels of agreement are found with the most recent, but there are large differences with the other for forbidden transitions. The resulting line intensities compare favourably with the observed values from the SERTS-89 and SUMER spectra. Theoretical soft X-ray emission lines are presented and several density diagnostic line ratios examined, which are in reasonable agreement with the limited observational data available.
Resumo:
Context. Absorption or emission lines of Fe II are observed in many astrophysical spectra and accurate atomic data are required to interpret these lines. The calculation of electron-impact excitation rates for transitions among even the lowest lying levels of Fe II is a formidable task for theoreticians.
Aims. In this paper, we present collision strengths and effective collision strengths for electron-impact excitation of Fe II for low-lying forbidden transitions among the lowest 16 fine-structure levels arising from the four LS states 3d(6)4s D-6(e), 3d(7) F-4(e), 3d(6)4s D-4(e), and 3d(7) P-4(e). The effective collision strengths are calculated for a wide range of electron temperatures of astrophysical importance from 30-100 000 K.
Methods. The parallel suite of Breit-Pauli codes are utilised to compute the collision cross sections for electron-impact excitation of Fe II and relativistic terms are included explicitly in both the target and the scattering approximation. 100 LS or 262-jj levels formed from the basis configurations 3d(6)4s, 3d(7), and 3d(6)4p were included in the wavefunction representation of the target, including all doublet, quartet, and sextet terms. Collision strengths for a total of 34191 individual transitions were computed.
Results. A detailed comparison is made with previous theoretical works and significant differences were found to occur in the effective collision strengths, particularly at low temperatures.
Resumo:
Background There is growing evidence linking early social and emotional wellbeing to later academic performance and various health outcomes including mental health. An economic evaluation was designed alongside the Roots of Empathy cluster-randomised trial evaluation, which is a school-based intervention for improving pupils’ social and emotional wellbeing. Exploration of the relevance of the Strengths and Diffi culties Questionnaire (SDQ) and Child Health Utility 9D (CHU9D) in school-based health economic evaluations is warranted. The SDQ is a behavioural screening questionnaire for 4–17-year-old children, consisting of a total diffi culties score, and also prosocial behaviour,
which aims to identify positive aspects of behaviour. The CHU9D is a generic preference-based health-related quality of life instrument for 7–17-year-old children.
Resumo:
We investigate the transport of phonons between N harmonic oscillators in contact with independent thermal baths and coupled to a common oscillator, and derive an expression for the steady state heat flow between the oscillators in the weak coupling limit. We apply these results to an optomechanical array consisting of a pair of mechanical resonators coupled to a single quantized electromagnetic field mode by radiation pressure as well as to thermal baths with different temperatures. In the weak coupling limit this system is shown to be equivalent to two mutually-coupled harmonic oscillators in contact with an effective common thermal bath in addition to their independent baths. The steady state occupation numbers and heat flows are derived and discussed in various regimes of interest.
Resumo:
We undertake a thorough analysis of the thermodynamics of the trajectories followed by a quantum harmonic oscillator coupled to $N$ dissipative baths by using a new approach to large-deviation theory inspired by phase-space quantum optics. As an illustrative example, we study the archetypal case of a harmonic oscillator coupled to two thermal baths, allowing for a comparison with the analogous classical result. In the low-temperature limit, we find a significant quantum suppression in the rate of work exchanged between the system and each bath. We further show how the presented method is capable of giving analytical results even for the case of a driven harmonic oscillator. Based on that result, we analyse the laser cooling of the motion of a trapped ion or optomechanical system, illustrating how the emission statistics can be controllably altered by the driving force.
Resumo:
Several factors affecting the reactivity of pulverised fuel ash (pfa) as a precursor for geopolymer concrete have been investigated. These include physical and chemical properties of various pfa sources, inclusion of ground granulated blast furnace slag (ggbs), chemical activator dosages and curing temperature. Alkali-activated pfa was found to require elevated curing temperatures and high alkali concentrations. A mixture of sodium hydroxide and sodium silicate was used and this was shown to result in high strengths, as high as 70 MPa at 28-days. The presence of silicates in solution was found to be a key factor. Detailed physical and chemical characterisation was carried out on thirteen pfa sources from the UK. The most important factor affecting the reactivity was found to be the particle size of pfa. The loss on ignition (LOI) and the amorphous content are also important parameters that need to be considered for the selection of pfa for use in geopolymer concrete. The partial replacement of pfa by ground granulated blast furnace slag (ggbs) was found to be beneficial in not only avoiding the need for elevated curing temperatures but also in improving compressive strengths. Microstructural characterisation with scanning electron microscope (SEM) coupled with energy dispersive X-ray spectroscopy (EDS) was performed on pfa/ggbs pastes. The reaction product of pfa and ggbs in these binary systems was calcium aluminium silicate hydrate gel (C-A-S-H) with inclusion of Na in the structure.
Resumo:
A simple circuit that is able to indicate if an injection-locked oscillator is in the locked condition by providing a ‘high’ or ‘low’ output is presented. The detector is compatible with most injection-locked oscillators as all that is required is access to the low-frequency bias circuit, with no direct access needed to the RF/microwave signals. To prove the universal nature of the lock detector it is successfully demonstrated practically for two scenarios: (i) a 1 GHz injection-locked VCO and (ii) a 60 GHz SiGe VCO MMIC.
A comparison of theoretical Mg VI emission line strengths with active-region observations from SERTS
Resumo:
R-matrix calculations of electron impact excitation rates in N-like Mg VI are used to derive theoretical electron-density-sensitive emission line ratios involving 2s22p3 - 2s2p4 transitions in the 269-403 Å wavelength range. A comparison of these with observations of a solar active region, obtained during the 1989 flight of the Solar EUV Rocket Telescope and Spectrograph (SERTS), reveals good agreement between theory and observation for the 2s22p3 4S - 2s2p 4 4p transitions at 399.28, 400.67, and 403.30 Å, and the 2s22p3 2p - 2s2p4 2D lines at 387.77 and 387.97 Å. However, intensities for the other lines attributed to Mg VI in this spectrum by various authors do not match the present theoretical predictions. We argue that these discrepancies are not due to errors in the adopted atomic data, as previously suggested, but rather to observational uncertainties or mis-identifications. Some of the features previously identified as Mg VI lines in the SERTS spectrum, such as 291.36 and 293.15 Å, are judged to be noise, while others (including 349.16 Å) appear to be blended.
Resumo:
Effective collision strengths for electron-impact excitation of the phosphorus-like ion Cl III are presented for all fine-structure transitions among the levels arising from the lowest 23 LS states. The collisional cross sections are computed in the multichannel close-coupling R-matrix approximation, where sophisticated configuration-interaction wave functions are used to represent the target states. The 23 LS states are formed from the basis configurations 3s23p3, 3s3p4, 3s23p23d, and 3s23p24s, and correspond to 49 fine-structure levels, leading to a total possible 1176 fine-structure transitions. The effective collision strengths, obtained by averaging the electron collision strengths over a Maxwellian distribution of electron velocities, are tabulated in this paper for all 1176 transitions and for electron temperatures in the ranges T(K)=7500-25,000 and log T(K)=4.4-5.4. The former range encompasses the temperatures of particular importance for application to gaseous nebulae, while the latter range is more applicable to the study of solar and laboratory-type plasmas. © 2001 Academic Press.
Resumo:
Effective collision strengths for the 10 astrophysically important fine-structure forbidden transitions among the 4So, 2Do and 2Po levels in the 3s23p3 configuration of Cl III are presented. The calculation employs the multichannel R-matrix method to compute the electron-impact excitation collision strengths in a close-coupling expansion, which incorporates the lowest 23 LS target eigenstates of Cl III. These states are formed from the 3s23p3, 3s3p4, 3s23p23d and 3s23p24s configurations. The Maxwellian-averaged effective collision strengths are presented graphically for all 10 fine-structure transitions over a wide range of electron temperatures appropriate for astrophysical applications [log T(K) = 3.3 - log T(K) = 5.9]. Comparisons are made with the earlier seven-state close-coupling calculation of Butler & Zeippen, and in general excellent agreement is found in the low-temperature region where a comparison is possible [log T(K) = 3.3 - log T(K) = 4.7]. However, discrepancies of up to 30 per cent are found to occur for the forbidden transitions which involve the 4So ground state level, particularly for the lowest temperatures considered. At the higher temperatures, the present data are the only reliable results currently available.
Resumo:
Effective collision strengths for electron-impact excitation of the N-like ion S x are calculated in the close-coupling approximation using the multichannel R-matrix method. Specific attention is given to the 10 astrophysically important fine-structure forbidden transitions among the 4SO, 2Do and 2Po levels in the 2s22p3 ground configuration. The total (e- + ion) wavefunction is expanded in terms of the 11 lowest LS eigenstates of S x, and each eigenstate is represented by extensive configuration-interaction wavefunctions. The collision strengths obtained are thermally averaged over a Maxwellian distribution of velocities, for all 10 fine-structure transitions, over the range of electron temperatures log T(K) = 4.6-6.7 (the range appropriate for astrophysical applications). The present effective collision strengths are the only results currently available for these fine-structure transition rates.