168 resultados para Nitrate uptake


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study aimed to investigate the effects of root surface iron plaque on the uptake kinetics of arsenite and arsenate by excised roots of rice (Oryza sativa) seedlings. The results demonstrated that the presence of iron plaque enhanced arsenite and decreased arsenate uptake. Arsenite and arsenate uptake kinetics were adequately fitted by the Michaelis-Menten function in the absence of plaque, but produced poor fits to this function in the presence of plaque. Phosphate in the uptake solution did not have a significant effect on arsenite uptake irrespective of the presence of iron plaque; however phosphate had a significant effect on arsenate uptake. Without iron plaque, phosphate inhibited arsenate uptake. The presence of iron plaque diminished the effect of phosphate on arsenate uptake, possibly through a combined effect of arsenate desorption from iron plaque.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms of arsenic (As) hyperaccumulation in Pteris vittata, the first identified As hyperaccumulator, are unknown. We investigated the interactions of arsenate and phosphate on the uptake and distribution of As and phosphorus (P), and As speciation in P. vittata. In an 18-d hydroponic experiment with varying concentrations of arsenate and phosphate, P. vittata accumulated As in the fronds up to 27,000 mg As kg(-1) dry weight, and the frond As to root As concentration ratio varied between 1.3 and 6.7. Increasing phosphate supply decreased As uptake markedly, with the effect being greater on root As concentration than on shoot As concentration. Increasing arsenate supply decreased the P concentration in the roots, but not in the fronds. Presence of phosphate in the uptake solution decreased arsenate influx markedly, whereas P starvation for 8 d increased the maximum net influx by 2.5-fold. The rate of arsenite uptake was 10% of that for arsenate in the absence of phosphate. Neither P starvation nor the presence of phosphate affected arsenite uptake. Within 8 h, 50% to 78% of the As taken up was distributed to the fronds, with a higher translocation efficiency for arsenite than for arsenate. In fronds, 49% to 94% of the As was extracted with a phosphate buffer (pH 5.6). Speciation analysis using high-performance liquid chromatography-inductively coupled plasma mass spectroscopy showed that >85% of the extracted As was in the form of arsenite, and the remaining mostly as arsenate. We conclude that arsenate is taken up by P. vittata via the phosphate transporters, reduced to arsenite, and sequestered in the fronds primarily as As(III).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arsenic (As) finds its way into soils used for rice (Oryza sativa) cultivation through polluted irrigation water, and through historic contamination with As-based pesticides. As is known to be present as a number of chemical species in such soils, so we wished to investigate how these species were accumulated by rice. As species found in soil solution from a greenhouse experiment where rice was irrigated with arsenate contaminated water were arsenite, arsenate, dimethylarsinic acid, and monomethylarsonic acid. The short-term uptake kinetics for these four As species were determined in 7-d-old excised rice roots. High-affinity uptake (0-0.0532 mM) for arsenite and arsenate with eight rice varieties, covering two growing seasons, rice var. Boro (dry season) and rice var. Aman (wet season), showed that uptake of both arsenite and arsenate by Boro varieties was less than that of Aman varieties. Arsenite uptake was active, and was taken up at approximately the same rate as arsenate. Greater uptake of arsenite, compared with arsenate, was found at higher substrate concentration (low-affinity uptake system). Competitive inhibition of uptake with phosphate showed that arsenite and arsenate were taken up by different uptake systems because arsenate uptake was strongly suppressed in the presence of phosphate, whereas arsenite transport was not affected by phosphate. At a slow rate, there was a hyperbolic uptake of monomethylarsonic acid, and limited uptake of dimethylarsinic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-affinity nitrate transport was examined in intact hyphae of Neurospora crassa using electrophysiological recordings to characterize the response of the plasma membrane to NO3- challenge and to quantify transport activity. The NO3(-)-associated membrane current was determined using a three electrode voltage clamp to bring membrane voltage under experimental control and to compensate for current dissipation along the longitudinal cell axis. Nitrate transport was evident in hyphae transferred to NO3(-)-free, N-limited medium for 15 hr, and in hyphae grown in the absence of a nitrogen source after a single 2-min exposure to 100 microM NO3-. In the latter, induction showed a latency of 40-80 min and rose in scalar fashion with full transport activity measurable approx. 100 min after first exposure to NO3-; it was marked by the appearance of a pronounced sensitivity of membrane voltage to extracellular NO3- additions which, after induction, resulted in reversible membrane depolarizations of (+)54-85 mV in the presence of 50 microM NO3-; and it was suppressed when NH4+ was present during the first, inductive exposure to NO3-. Voltage clamp measurements carried out immediately before and following NO3- additions showed that the NO3(-)-evoked depolarizations were the consequence of an inward-directed current that appeared in parallel with the depolarizations across the entire range of accessible voltages (-400 to +100 mV). Measurements of NO3- uptake using NO3(-)-selective macroelectrodes indicated a charge stoichiometry for NO3- transport of 1(+):1(NO3-) with common K(m) and Jmax values around 25 microM and 75 pmol NO3- cm-2sec-1, respectively, and combined measurements of pHo and [NO3-]o showed a net uptake of approx. 1 H+ with each NO3- anion. Analysis of the NO3- current demonstrated a pronounced voltage sensitivity within the normal physiological range between -300 and -100 mV as well as interactions between the kinetic parameters of membrane voltage, pHo and [NO3-]o. Increasing the bathing pH from 5.5 to 8.0 reduced the current and the associated membrane depolarizations 2- to 4-fold. At a constant pHo of 6.1, driving the membrane voltage from -350 to -150 mV resulted in an approx. 3-fold reduction in the maximum current and a 5-fold rise in the apparent affinity for NO3-. By contrast, the same depolarization effected an approx. 20% fall in the K(m) for transport as a function in [H+]o. These, and additional results are consistent with a charge-coupling stoichiometry of 2(H+) per NO3- anion transported across the membrane, and implicate a carrier cycle in which NO3- binding is kinetically adjacent to the rate-limiting step of membrane charge transit. The data concur with previous studies demonstrating a pronounced voltage-dependence to high-affinity NO3- transport system in Arabidopsis, and underline the importance of voltage as a kinetic factor controlling NO3- transport; finally, they distinguish metabolite repression of NO3- transport induction from its sensitivity to metabolic blockade and competition with the uptake of other substrates that draw on membrane voltage as a kinetic substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of two new tripodal complexes [Ru(L3)](PF6)2 and [Ru(L4)](PF6)2, encapsulating a ruthenium(II) cation has been successfully achieved and the products fully characterized, including by X-ray structural determination. The smaller cavity, built around a tris(2-aminoethyl)amido scaffold demonstrated only moderate and predictable interactions with a range of anions and no significant spectroscopic change with nitrate, chloride and bromide, although dihydrogen phosphate did result in an almost stoichiometric precipitation. The expansion of the cavity to include the more rigid 1,3,5-benzenetricarbonylamide group creates a larger cavity, which shows a decrease in the emission on the introduction of chloride, bromide, hydrogensulfate and nitrate salts, with the 1H NMR titrations giving a surprisingly high binding affinity for nitrate over the smaller and simpler halides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Density, ?, viscosity, ?, and conductivity, s, measurements of binary mixtures containing the pyrrolidinium nitrate Protic Ionic Liquid (PIL) and propylene carbonate (PC), are determined at the atmospheric pressure as a function of the temperature from (283.15 to 353.15) K and within the whole composition range. The temperature dependence of both the viscosity and conductivity of each mixture exhibits a non-Arrhenius behaviour, but is correctly fitted by using the Vogel–Tamman–Fulcher (VTF) equation. In each case, the best-fit parameters, such as the pseudo activation energy, View the MathML source and ideal glass transition temperature, T0 are then extracted. The excess molar volumes VE, and viscosity deviations from the ideality, ??, of each investigated mixture were then deduced from the experimental results, as well as, their apparent molar volumes, V?, thermal expansion coefficients ap, and excess Gibbs free energies (?G*E) of activation of viscous flow. The VE, apE, ?? values are negative over the whole composition range for each studied temperature therein. According to the Walden rule, the ionicity of each mixture was then evaluated as a function of the temperature from (283.15 to 353.15) K and of the composition. Results have been then discussed in terms of molecular interactions and molecular structures in this binary mixture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequestration of CO2 via biological sinks is a matter of great scientific importance due to the potential lowering of atmospheric CO2. In this study, a custom built incubation chamber was used to cultivate a soil microbial community to instigate chemoautotrophy of a temperate soil. Real-time atmospheric CO2 concentrations were monitored and estimations of total CO2 uptake were made. After careful background flux corrections, 4.52 +/- 0.05 g CO2 kg I dry soil was sequestered from the chamber atmosphere over 40 h. Using isotopically labelled (CO2)-C-13 and GCMS-IRMS, labelled fatty acids were identified after only a short incubation, hence confirming CO2 sequestration for soil. The results of this in vivo study provide the ground work for future studies intending to mimic the in situ environment by providing a reliable method for investigating CO2 uptake by soil microorganisms.(C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The means by which airway epithelial cells sense a bacterial infection and which intracellular signalling pathways are activated upon infection are poorly understood. A549 cells and human primary airway cells (NHBE) were used to investigate the response to infection with Klebsiella pneumoniae. Infection of A549 and NHBE with K. pneumoniae 52K10, a capsule polysaccharide (CPS) mutant, increased the surface levels of ICAM-1 and caused the release of IL-8. By contrast, the wild-type strain did not elicit these responses. Consistent with a functional role for these responses, there was a correlation between ICAM-1 levels and the number of adherent leukocytes on the epithelial cell surface. In addition, treatment of neutrophils with IL-8 enhanced their ability to kill K. pneumoniae. Strain 52K10 was internalized by A549 cells more efficiently than the wild-type, and when infections with 52K10 were performed in the presence of cytochalasin D the inflammatory response was abrogated. These findings suggest that cellular activation is mediated by bacterial internalization and that CPS prevents the activation through the blockage of bacterial adhesion and uptake. Collectively, the results indicate that bacterial internalization by airway epithelial cells could be the triggering signal for the activation of the innate immune system of the airway. Infection of A549 cells by 52K10 was shown to trigger the nuclear translocation of NF-kappaB. Evidence is presented showing that 52K10 activated IL-8 production through Toll-like receptor (TLR) 2 and TLR4 pathways and that A549 cells could use soluble CD14 as TLR co-receptor.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the preparation of silica-supported nickel oxide from nickel nitrate impregnation and drying, the replacement of the traditional air calcination step by a thermal treatment in 1% NO/Ar prevents agglomeration, resulting in highly dispersed NiO. The mechanism by which NO prevents agglomeration was investigated by using combined in situ diffuse reflectance infrared fourier transform (DRIFT) spectroscopy and mass spectrometry (MS). After impregnation and drying, a supported nickel hydroxynitrate phase with composition Ni(3)(NO(3))(2)(OH)(4) had been formed. Comparison of the evolution of the decomposition gases during the thermal decomposition of Ni(3)(NO(3))(2)(OH)(4) in labeled and unlabeled NO and O(2) revealed that NO scavenges oxygen radicals, forming NO(2). The DRIFT spectra revealed that the surface speciation evolved differently in the presence of NO as compared with in O(2) or Ar. It is proposed that oxygen scavenging by NO depletes the Ni(3)(NO(3))(2)(OH)(4) phase of nitrate groups, creating nucleation sites for the formation of NiO, which leads to very small (similar to 4 nm) NiO particles and prevents agglomeration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compartmented soil-glass bead culture system was used to investigate characteristics of iron plaque and arsenic accumulation and speciation in mature rice plants with different capacities of forming iron plaque on their roots. X-ray absorption near-edge structure spectra and extended X-ray absorption fine structure were utilized to identify the mineralogical characteristics of iron plaque and arsenic sequestration in plaque on the rice roots. Iron plaque was dominated by (oxyhydr)oxides, which were composed of ferrihydrite (81-100%), with a minor amount of goethite (19%) fitted in one of the samples. Sequential extraction and XANES data showed that arsenic in iron plaque was sequestered mainly with amorphous and crystalline iron (oxyhydr)oxides, and that arsenate was the predominant species. There was significant variation in iron plaque formation between genotypes, and the distribution of arsenic in different components of mature rice plants followed the following order:? iron plaque > root > straw > husk > grain for all genotypes. Arsenic accumulation in grain differed significantly among genotypes. Inorganic arsenic and dimethylarsinic acid (DMA) were the main arsenic species in rice grain for six genotypes, and there were large genotypic differences in levels of DMA and inorganic arsenic in grain. A compartmented soil-glass bead culture system was used to investigate characteristics of iron plaque and arsenic accumulation and speciation in mature rice plants with different capacities of forming iron plaque on their roots. X-ray absorption near-edge structure spectra and extended X-ray absorption fine structure were utilized to identify the mineralogical characteristics of iron plaque and arsenic sequestration in plaque on the rice roots. Iron plaque was dominated by (oxyhydr)oxides, which were composed of ferrihydrite (81-100%), with a minor amount of goethite (19%) fitted in one of the samples. Sequential extraction and XANES data showed that arsenic in iron plaque was sequestered mainly with amorphous and crystalline iron (oxyhydr)oxides, and that arsenate was the predominant species. There was significant variation in iron plaque formation between genotypes, and the distribution of arsenic in different components of mature rice plants followed the following order:? iron plaque > root > straw > husk > grain for all genotypes. Arsenic accumulation in grain differed significantly among genotypes. Inorganic arsenic and dimethylarsinic acid (DMA) were the main arsenic species in rice grain for six genotypes, and there were large genotypic differences in levels of DMA and inorganic arsenic in grain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Duckweeds are a common macrophyte in paddy and aquatic environments. Here, we investigated arsenic (As) accumulation, speciation and tolerance of the rootless duckweed Wolffia globosa and its potential for As phytofiltration.

When grown with 1 mu M arsenate, W. globosa accumulated two to 10 times more As than four other duckweed or Azolla species tested. W. globosa was able to accumulate > 1000 mg As kg(-1) in frond dry weight (DW), and tolerate up to 400 mg As kg-1 DW. At the low concentration range, uptake rate was similar for arsenate and arsenite, but at the high concentration range, arsenite was taken up at a faster rate.

Arsenite was the predominant As species (c. 90% of the total extractable As) in both arsenate-and arsenite-exposed duckweed. W. globosa was more resistant to external arsenate than arsenite, but showed a similar degree of tolerance internally. W. globosa decreased arsenate in solution rapidly, but also effluxed arsenite.

Wolffia globosa is a strong As accumulator and an interesting model plant to study As uptake and metabolism because of the lack of a root-to-frond translocation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compared to other cereals, rice has particular strong As accumulation. Therefore, it is very important to understand As uptake and translocation among different genotypes. A field study in Chenzhou city, Hunan province of China, was employed to evaluate the effect of arsenic-contaminated soil on uptake and distribution in 34 genotypes of rice (including unpolished rice, husk, shoot, and root). The soil As concentrations ranged from 52.49 to 83.86 mg kg-1, with mean As concentration 64.44 mg kg-1. The mean As concentrations in rice plant tissues were different among the 34 rice genotypes. The highest As concentrations were accumulated in rice root (196.27-385.98 mg kg-1 dry weight), while the lowest was in unpolished rice (0.31-0.52 mg kg-1 dry weight). The distribution of As in rice tissue and paddy soil are as follows root » soil > shoot > husk > unpolished rice. The ranges of concentrations of inorganic As in all of unpolished rice were from 0.26 to 0.52 mg kg-1 dry weight. In particular, the percentage of inorganic As in the total As was more than 67 %, indicating that the inorganic As was the predominant species in unpolished rice. The daily dietary intakes of inorganic As in unpolished rice ranged from 0.10 to 0.21 mg for an adult, and from 0.075 to 0.15 mg for a child. Comparison with tolerable daily intakes established by FAO/WHO, inorganic As in most of unpolished rice samples exceeded the recommended intake values. The 34 genotypes of rice were classified into four clusters using a criteria value of rescaled distance between 5 and 10. Among the 34 genotypes, the genotypes II you 416 (II416) with the lowest enrichment of As and the lowest daily dietary intakes of inorganic As could be selected as the main cultivar in As-contaminated field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Hunan province is well-known for its extensive base-metal extraction and smelting industries. However, the legacies of excavation operations, transportation, and selective smelting activities within Hunan have resulted in the generation of large quantities of mine wastes, which will become the sources of metal contamination in the environment. Thus, there is an increasingly important health issue underlying the study of arable land pollution and transfer of As, Cd, and Pb in the paddy soil–rice system.
Materials and methods: Paddy soils collected from mining- and smelting-impacted areas in Hunan province and rice seed (Oryza sativa L. cv Jia Hua-1) were used for pot experiments under greenhouse conditions. One 30-day-old seedling was transplanted into one pot containing 5.0 kg pretreated soil. At harvest, rice grains and shoots were washed with distilled water to remove surface soil, and oven-dried at 65°C for 96 h until a constant weight was reached. Roots were washed carefully with distilled water for the next process of extracting iron plaque using dithionite–citrate–bicarbonate solution. Total concentrations of As, Cd, and Pb in soil and rice plant tissues were measured by inductively coupled plasma mass spectrometer.
Results and discussion: Total concentrations of As, Cd, and Pb in the soils collected from 12 mining- and smelting-impacted areas in Hunan province were much higher than Hunan background values and exceeded the maximum concentration limit for soils set by the Ministry of Environmental Protection. The yields of rice grain from Pb/Zn mining and smelting sites were negatively correlated to overall pollution scores. Distributions of As, Cd, and Pb in rice plant followed: root >> shoot > husk > whole grain. About 30.1–88.1% of As, 11.2–43.5% of Cd, and 14.0–33.9% of Pb were accumulated in iron plaque on root surfaces.
Conclusions: High concentrations of As, Cd, and Pb are observed in paddy soils from mining- and smelting-impacted areas in Hunan province, indicating those paddy soils suffer serious combined heavy metal contamination. In particular, Cd is the dominant contaminant followed by As and Pb in paddy soils from most locations. The distributions of As, Cd, and Pb in rice tissue were: root >> shoot > husk > whole grain. Concentrations of Pb in all whole grain and of As and Cd in 50% of whole grain samples exceeded Chinese Hygienic Standard values for food.