162 resultados para Negative priming
Resumo:
Background: Treatment options for women presenting with triple negative breast cancer (TNBC) are limited due to the lack of a therapeutic target and as a result, are managed with standard chemotherapy such as paclitaxel (Taxol®). Following chemotherapy, the ideal tumour response is apoptotic cell death. Post-chemotherapy, cells can maintain viability by undergoing viable cellular responses such as cellular senescence, generating secretomes which can directly enhance the malignant phenotype.
Scope of Review: How tumour cells retain viability in response to chemotherapeutic engagement is discussed. In addition we discuss the implications of this retained tumour cell viability in the context of the development of recurrent and metastatic TNBC disease. Current adjuvant and neo-adjuvant treatments available and the novel potential therapies that are being researched are also reviewed.
Major conclusions: Cellular senescence and cytoprotective autophagy are potential mechanisms of chemoresistance in TNBC. These two non-apoptotic outcomes in response to chemotherapy are inextricably linked and are neglected outcomes of investigation in the chemotherapeutic arena. Cellular fate assessments may therefore have the potential to predict TNBC patient outcome.
General Significance: Focusing on the fact that cancer cells can bypass the desired cellular apoptotic response to chemotherapy through cellular senescence and cytoprotective autophagy will highlight the importance of targeting non-apoptotic survival pathways to enhance chemotherapeutic efficacy
Resumo:
This paper describes a study that used video materials and visits to an airport to prepare children on the autism spectrum for travel by plane. Twenty parents and carers took part in the study with children aged from 3 to 16 years. The authors explain that the methods they used were based on Applied Behaviour Analysis (ABA) research; a video modeling technique called Point-Of-View Video-priming and during visits to an airport they used procedures known as Natural Environment Teaching. The findings suggest that using video and preparing children by taking them through what is likely to happen in the real environment when they travel by plane is effective and the authors suggest these strategies could be used to support children with autism with other experiences they need or would like to engage in such as visits to the dentist or hairdressers and access to leisure centres and other public spaces.
Resumo:
Intersectin is a multidomain dynamin-binding protein implicated in numerous functions in the nervous system, including synapse formation and endocytosis. Here, we demonstrate that during neurotransmitter release in the central synapse, intersectin, like its binding partner dynamin, is redistributed from the synaptic vesicle pool to the periactive zone. Acute perturbation of the intersectin-dynamin interaction by microinjection of either intersectin antibodies or Src homology 3 (SH3) domains inhibited endocytosis at the fission step. Although the morphological effects induced by the different reagents were similar, antibody injections resulted in a dramatic increase in dynamin immunoreactivity around coated pits and at constricted necks, whereas synapses microinjected with the GST (glutathione S-transferase)-SH3C domain displayed reduced amounts of dynamin in the neck region. Our data suggest that intersectin controls the amount of dynamin released from the synaptic vesicle cluster to the periactive zone and that it may regulate fission of clathrin-coated intermediates.
Resumo:
The adaptor protein-2 sigma subunit (AP2sigma;2) is pivotal for clathrin-mediated endocytosis of plasma membrane constituents such as the calcium-sensing receptor (CaSR). Mutations of the AP2sigma;2 Arg15 residue result in familial hypocalciuric hypercalcaemia type 3 (FHH3), a disorder of extracellular calcium (Ca<inf>o</inf><sup>2+</sup>) homeostasis. To elucidate the role of AP2sigma;2 in Ca<inf>o</inf><sup>2+</sup> regulation, we investigated 65 FHH probands, without other FHH-associated mutations, for AP2sigma;2 mutations, characterized their functional consequences and investigated the genetic mechanisms leading to FHH3. AP2sigma;2 mutations were identified in 17 probands, comprising 5 Arg15Cys, 4 Arg15His and 8 Arg15Leu mutations. A genotype-phenotype correlation was observed with the Arg15Leu mutation leading to marked hypercalcaemia. FHH3 probands harboured additional phenotypes such as cognitive dysfunction. All three FHH3-causing AP2sigma;2 mutations impaired CaSR signal transduction in a dominant-negative manner. Mutational bias was observed at the AP2sigma;2 Arg15 residue as other predicted missense substitutions (Arg15Gly, Arg15Pro and Arg15Ser), which also caused CaSR loss-of-function, were not detected in FHH probands, and these mutations were found to reduce the numbers of CaSR-expressing cells. FHH3 probands had significantly greater serum calcium (sCa) and magnesium (sMg) concentrations with reduced urinary calcium to creatinine clearance ratios (CCCR) in comparison with FHH1 probands with CaSR mutations, and a calculated index of sCa × sMg/100 × CCCR, which was ≥ 5.0, had a diagnostic sensitivity and specificity of 83 and 86%, respectively, for FHH3. Thus, our studies demonstrate AP2sigma;2 mutations to result in a more severe FHH phenotype with genotype-phenotype correlations, and a dominant-negative mechanism of action with mutational bias at the Arg15 residue.
Resumo:
BACKGROUND: Evidence suggests that genetic factors may influence both schizophrenia (Scz) and its clinical presentation. In recent years, genome-wide association studies (GWAS) have demonstrated considerable success in identifying risk loci. Detection of "modifier loci" has the potential to further elucidate underlying disease processes.
METHODS: We performed GWAS of empirically derived positive and negative symptom scales in Irish cases from multiply affected pedigrees and a larger, independent case-control sample, subsequently combining these into a large Irish meta-analysis. In addition to single-SNP associations, we considered gene-based and pathway analyses to better capture convergent genetic effects, and to facilitate biological interpretation of these findings. Replication and testing of aggregate genetic effects was conducted using an independent European-American sample.
RESULTS: Though no single marker met the genome-wide significance threshold, genes and ontologies/pathways were significantly associated with negative and positive symptoms; notably, NKAIN2 and NRG1, respectively. We observed limited overlap in ontologies/pathways associated with different symptom profiles, with immune-related categories over-represented for negative symptoms, and addiction-related categories for positive symptoms. Replication analyses suggested that genes associated with clinical presentation are generalizable to non-Irish samples.
CONCLUSIONS: These findings strongly support the hypothesis that modifier loci contribute to the etiology of distinct Scz symptom profiles. The finding that previously implicated "risk loci" actually influence particular symptom dimensions has the potential to better delineate the roles of these genes in Scz etiology. Furthermore, the over-representation of distinct gene ontologies/pathways across symptom profiles suggests that the clinical heterogeneity of Scz is due in part to complex and diverse genetic factors.
Resumo:
The discovery of somatic mutations, primarily JAK2V617F and CALR, in classic BCR-ABL1-negative myeloproliferative neoplasms (MPNs) has generated interest in the development of molecularly targeted therapies, whose accurate assessment requires a standardized framework. A working group, comprised of members from European LeukemiaNet (ELN) and International Working Group for MPN Research and Treatment (IWG-MRT), prepared consensus-based recommendations regarding trial design, patient selection and definition of relevant end points. Accordingly, a response able to capture the long-term effect of the drug should be selected as the end point of phase II trials aimed at developing new drugs for MPNs. A time-to-event, such as overall survival, or progression-free survival or both, as co-primary end points, should measure efficacy in phase III studies. New drugs should be tested for preventing disease progression in myelofibrosis patients with early disease in randomized studies, and a time to event, such as progression-free or event-free survival should be the primary end point. Phase III trials aimed at preventing vascular events in polycythemia vera and essential thrombocythemia should be based on a selection of the target population based on new prognostic factors, including JAK2 mutation. In conclusion, we recommended a format for clinical trials in MPNs that facilitates communication between academic investigators, regulatory agencies and drug companies.
Resumo:
The scenario of "electron-capture and -loss" was recently proposed for the formation of negative ion and neutral atom beams with MeV kinetic energies. However, it does not explain why the formation of negative ions in a liquid spray is much more efficient than with an isolated atom. The role of atomic excited states in the charge-exchange processes is considered, and it is shown that it cannot account for the observed phenomena. The processes are more complex than the single electron-capture and -loss approach. It is suggested that the shell effects in the electronic structure of the projectile ion and/or target atoms may influence the capture/loss probabilities.
Resumo:
41.Connor, M.C., Fairley, D.J. Marks, N.J. McGrath, J.W. (2016) Clostridium difficile Ribotype 023 lacks the ability to hydrolyse esculin, leading to false negative results on chromogenic agar. Letters in Applied Microbiology