293 resultados para Mutation testing
Resumo:
An in vitro method of determining the activity of antibiotics in combination which is simple and convenient to perform and which could be used routinely in clinical microbiology laboratories is desirable. We investigated the activity, against Pseudomonas aeruginosa and Burkholderia cepacia complex clinical isolates, of ceftazidime and tobramycin in combination using a broth macrodilution sensitivity method based on breakpoint minimum inhibitory concentrations and compared the results obtained using this method with those obtained using the microtitre checkerboard method. There was good agreement in interpretation of results between the two methods for both P. aeruginosa (90%) and B. cepacia complex isolates (70%) with tobramycin and for P. aeruginosa isolates (70%) with ceftazidime. As the breakpoint combination sensitivity testing method employs only four tubes and does not require initial determination of individual antibiotic minimum inhibitory concentrations, it is simpler and more convenient for determining the activity of antibiotics in combination than the microtitre checkerboard method. The use of this method in routine microbiology laboratories to determine the activity of antibiotic combinations against clinical isolates should optimise treatment of infection by ensuring that appropriate antibiotic combinations are prescribed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A colorimetric assay based on the reduction of a tetrazolium salt {2,3-bis[2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT)} for rapidly determining the susceptibility of Pseudomonas aeruginosa isolates to bactericidal antibiotics is described. There was excellent agreement between the tobramycin and ofloxacin MICs determined after 5 h using the XTT assay and after 18 h using conventional methods. The data suggests that an XTT-based assay could provide a useful method for rapidly determining the susceptibility of P. aeruginosa to bactericidal antibiotics.
Resumo:
Objectives: To investigate the impact of different PSA testing policies and health-care systems on prostate cancer incidence and mortality in two countries with similar populations, the Republic of Ireland (RoI) and Northern Ireland (NI).
Methods: Population-level data on PSA tests, prostate biopsies and prostate cancer cases 1993–2005 and prostate cancer deaths 1979–2006 were compiled. Annual percentage change (APC) was estimated by joinpoint regression.
Results: Prostate cancer rates were similar in both areas in 1994 but increased rapidly in RoI compared to NI. The PSA testing rate increased sharply in RoI (APC = +23.3%), and to a lesser degree in NI (APC = +9.7%) to reach 412 and 177 tests per 1,000 men in 2004, respectively. Prostatic biopsy rates rose in both countries, but were twofold higher in RoI. Cancer incidence rates rose significantly, mirroring biopsy trends, in both countries reaching 440 per 100,000 men in RoI in 2004 compared to 294 in NI. Median age at diagnosis was lower in RoI (71 years) compared to NI (73 years) (p < 0.01) and decreased significantly over time in both countries. Mortality rates declined from 1995 in both countries (APC = -1.5% in RoI, -1.3% in NI) at a time when PSA testing was not widespread.
Conclusions: Prostatic biopsy rates, rather than PSA testing per se, were the main driver of prostate cancer incidence. Because mortality decreases started before screening became widespread in RoI, and mortality remained low in NI, PSA testing is unlikely to be the explanation for declining mortality.
Resumo:
Attenuation processes controlling virus fate and transport in the vadose zone of karstified systems can strongly influence groundwater quality. This research compares the breakthrough of two bacteriophage tracers (H40/1 and T7), with contrasting properties, at subsurface monitoring points following application onto an overlying composite sequence of thin organic soil and weathered limestone (epikarst). Short pulse multi-tracer test results revealed that T7 (Source concentration, Co=1.8x106pfu/mL) and H40/1(Co=5.9x106pfu/mL) could reach sampling points 10m below ground less than 30 minutes after tracer application. Contrasting deposition rates, determined from simulated tracer responses, reflected the potential of the ground to differentially attenuate viruses. Prolonged application of both T7 (Co=2.3x104pfu/mL) and H40/1 (Co=1.3x105pfu/mL) over a five hour period during a subsequent test, in which ionic strength levels observed at monitoring points rose consistently, corresponded to a rapid rise in T7 levels, followed by a gradual decline before the end of tracer injection; this reflected reaction-limited deposition in the system. T7’s response contrasted with that of H40/1, whose concentration remained constant over a three hour period before declining dramatically prior to the end of tracer injection. Subsequent application of lower ionic strength tracer-free flush water generated a rapid rise in H40/1 levels and a more gradual release of T7. Results highlight the benefits of employing prolonged injection multi-tracer tests for identifying processes not apparent from conventional short pulse tests. Study findings demonstrate that despite rapid transport rates, the epikarst is capable of physicochemical filtration of viruses and their remobilization, depending on virus type and hydrochemical conditions.