163 resultados para Mitochondrial dysfunction
Resumo:
AIMS: Epigenetic modifications, such as DNA methylation, can influence the risk of developing kidney disease. We studied methylation profiles in genes related to mitochondrial function to assess whether differences in these epigenetic features were associated with diabetic kidney disease in people with Type 1 diabetes.
METHODS: A case-control association study was undertaken (n = 196 individuals with diabetic kidney disease vs. n = 246 individuals without renal disease). Participants were White and diagnosed with Type 1 diabetes before 31 years of age. Genes that encode mitochondrial proteins (n = 780) were downloaded from mitoproteome. org. DNA methylation profiles from blood-derived DNA were generated using the Illumina Infinium HumanMethylation450 (262 samples) and Illumina Infinium HumanMethylation27 (192 samples) arrays. Beta values (β) were calculated and quality control was conducted, including evaluating blind duplicate DNA samples.
RESULTS: Fifty-four Cytosine-phosphate-Guanine probes across 51 unique genes were significantly associated (P ≤ 10(-8) ) with diabetic kidney disease across both the 450K and the 27K methylation arrays. A subanalysis, employing the 450K array, identified 755 Cytosine-phosphate-Guanine probes in 374 genes that were significantly associated (P ≤ 10(-8) ) with end-stage renal disease. Forty-six of the top-ranked variants for diabetic kidney disease were also identified as being differentially methylated in individuals with end-stage renal disease. The largest change in methylation (Δβ = 0.2) was observed for cg03169527 in the TAMM41 gene, chromosome 3p25.2. Three genes, PMPCB, TSFM and AUH, were observed with differential methylation at multiple Cytosine-phosphate-Guanine sites each (P < 10(-12) ).
CONCLUSIONS: Differential methylation in genes that influence mitochondrial function are associated with kidney disease in individuals with Type 1 diabetes.
Resumo:
Introduction
Despite excellent first year outcomes in kidney transplantation, there remain significant long-term complications related to new-onset diabetes after transplantation (NODAT). The purpose of this study was to validate the findings of previous investigations of candidate gene variants in patients undergoing a protocolised, contemporary immunosuppression regimen, using detailed serial biochemical testing to identify NODAT development.
Methods
One hundred twelve live and deceased donor renal transplant recipients were prospectively followed-up for NODAT onset, biochemical testing at days 7, 90, and 365 after transplantation. Sixty-eight patients were included after exclusion for non-white ethnicity and pre-transplant diabetes. Literature review to identify candidate gene variants was undertaken as described previously.
Results
Over 25% of patients developed NODAT. In an adjusted model for age, sex, BMI, and BMI change over 12 months, five out of the studied 37 single nucleotide polymorphisms (SNPs) were significantly associated with NODAT: rs16936667:PRDM14 OR 10.57;95% CI 1.8–63.0;p = 0.01, rs1801282:PPARG OR 8.5; 95% CI 1.4–52.7; p = 0.02, rs8192678:PPARGC1A OR 0.26; 95% CI 0.08–0.91; p = 0.03, rs2144908:HNF4A OR 7.0; 95% CI 1.1–45.0;p = 0.04 and rs2340721:ATF6 OR 0.21; 95%CI 0.04–1.0; p = 0.05.
Conclusion
This study represents a replication study of candidate SNPs associated with developing NODAT and implicates mTOR as the central regulator via altered insulin sensitivity, pancreatic β cell, and mitochondrial survival and dysfunction as evidenced by the five SNPs.
General significance
1) Highlights the importance of careful biochemical phenotyping with oral glucose tolerance tests to diagnose NODAT in reducing time to diagnosis and missed cases.
2)This alters potential genotype:phenotype association.
3)The replication study generates the hypothesis that mTOR signalling pathway may be involved in NODAT development.
Resumo:
PURPOSE: This preliminary investigation was designed to test the hypothesis that high intensity single-leg exercise can cause extensive cell DNA damage, which subsequently may affect the expression of the HO-1 gene. METHODS: Six (n=6) apparently healthy male participants (age 27 + 7 yrs, stature 174 + 12 cm, body mass 79 + 4 kg and BMI 24 + 4 kg/m2) completed 100 isolated and continuous maximal concentric contractions (minimum force = 200 N, speed of contraction = 60°/sec) of the rectus femoris muscle. Using a spring-loaded and reusable Magnum biopsy gun with a 16-gauge core disposable biopsy needle, skeletal muscle micro biopsy tissue samples were extracted at rest and following exercise. mRNA gene expression was determined via two-step quantitative real-time PCR using GAPDH as a reference gene. RESULTS: The average muscle force production was 379 + 179 N. High intensity exercise increased mitochondrial 8-OHdG concentration (P < 0.05 vs. rest) with a concomitant decrease in total antioxidant capacity (P < 0.05 vs. rest). Exercise also increased protein oxidation as quantified by protein carbonyl concentration (P < 0.05 vs. rest). HO-1 expression increased (> 2-fold change vs. rest) following exercise, and it is postulated that this change was not significant due to low subject numbers (P > 0.05). CONCLUSION: These preliminary findings tentatively suggest that maximal concentric muscle contractions can cause intracellular DNA damage with no apparent disruption to the expression of the antioxidant stress protein HO-1. Moreover, it is likely that cell oxidant stress is required to activate the signal transduction cascade related to the expression of HO-1. A large-scale study incorporating a greater subject number is warranted to fully elucidate this relationship.
Resumo:
Globally, sharks are under enormous pressure from fishing efforts. One such species is the silky shark, Carcharhinus falciformis, which occurs in all the Earth’s tropical oceans and is captured in large numbers in pelagic fisheries. Regionally, the silky shark is listed as Vulnerable to Near Threatened by the International Union for the Conservation of Nature due to high levels of direct and by catch exploitation. Despite major conservation concerns about this species, little is known about its genetic status and level of demographic or evolutionary connectivity among its regional distributions. We report a genetic assessment of silky sharks sampled across a major portion of the species’ global range. We sequenced the complete mitochondrial DNA control region from 276 individuals taken from the western Atlantic and Indo-Pacific Oceans and the Red Sea. Overall, haplotype and nucleotide diversities were relatively large (0.93 ± 0.01 and 0.61 ± 0.32 %, respectively). Nucleotide diversity in Indo-Pacific sharks, however, was significantly lower and about half that in Atlantic sharks. Strong phylogeographic partitioning occurred between ocean basins. Furthermore, shallow but significant pairwise statistical differentiation occurred among most regional samples within the Indo-Pacific, but not the western Atlantic. Overall, at least five mitochondrial DNA populations of silky sharks were identified globally. Despite historically large population sizes, silky sharks appear to be isolated on relatively small spatial scales, at least in the Indo-Pacific, indicating that conservation and management efforts will need to be exerted at relatively small scales in a pelagic and highly vagile species.
Resumo:
Repeated recolonization of freshwater environments following Pleistocene glaciations has played a major role in the evolution and adaptation of anadromous taxa. Located at the western fringe of Europe, Ireland and Britain were likely recolonized rapidly by anadromous fishes from the North Atlantic following the last glacial maximum (LGM). While the presence of unique mitochondrial haplotypes in Ireland suggests that a cryptic northern refugium may have played a role in recolonization, no explicit test of this hypothesis has been conducted. The three-spined stickleback is native and ubiquitous to aquatic ecosystems throughout Ireland, making it an excellent model species with which to examine the biogeographical history of anadromous fishes in the region. We used mitochondrial and microsatellite markers to examine the presence of divergent evolutionary lineages and to assess broad-scale patterns of geographical clustering among postglacially isolated populations. Our results confirm that Ireland is a region of secondary contact for divergent mitochondrial lineages and that endemic haplotypes occur in populations in Central and Southern Ireland. To test whether a putative Irish lineage arose from a cryptic Irish refugium, we used approximate Bayesian computation (ABC). However, we found no support for this hypothesis. Instead, the Irish lineage likely diverged from the European lineage as a result of postglacial isolation of freshwater populations by rising sea levels. These findings emphasize the need to rigorously test biogeographical hypothesis and contribute further evidence that postglacial processes may have shaped genetic diversity in temperate fauna.