144 resultados para Melt Extrusion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to increase understanding of the mechanism and dominant drivers influencing phase separation during ram extrusion of calcium phosphate (CaP) paste for orthopaedic applications. The liquid content of extrudate was determined, and the flow of liquid and powder phases within the syringe barrel during extrusion were observed, subject to various extrusion parameters. Increasing the initial liquid-to-powder mass ratio, LPR, (0.4-0.45), plunger rate (5-20 mm/min), and tapering the barrel exit (45°-90°) significantly reduced the extent of phase separation. Phase separation values ranged from (6.22 ± 0.69 to 18.94 ± 0.69 %). However altering needle geometry had no significant effect on phase separation. From powder tracing and liquid content determination, static zones of powder and a non-uniform liquid distribution was observed within the barrel. Measurements of extrudate and paste LPR within the barrel indicated that extrudate LPR remained constant during extrusion, while LPR of paste within the barrel decreased steadily. These observations indicate the mechanism of phase separation was located within the syringe barrel. Therefore phase separation can be attributed to either; (1) the liquid being forced downstream by an increase in pore pressure as a result of powder consolidation due to the pressure exerted by the plunger or (2) the liquid being drawn from paste within the barrel, due to suction, driven by dilation of the solids matrix at the barrel exit. Differentiating between these two mechanisms is difficult; however results obtained suggest that suction is the dominant phase separation mechanism occurring during extrusion of CaP paste.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In co-melt granulation, collisions occur between the particles to be agglomerated and the binder material. Depending on the stage of granulation, the binder material can be in the solid or liquid phase. The outcome of these collisions controls the dynamics of the granulation process and the fundamental physics of the impacts are of interest. This paper examines the impact of glass beads (model particles) and solid Poly Ethylene Glycol (PEG) flakes on a substrate of PEG as the temperature of the PEG layer is increased from below its melting point to above it. While the layer is in the solid state, the result of the impact can be quantified by the coefficient of restitution. When the layer is in the liquid state, the impact can be quantified by the immersion behaviour. The results obtained show that the coefficient of restitution between either glass beads and PEG flakes and the PEG layer is strongly affected by temperatures. As the PEG layer approaches its melting point, the coefficient of restitution falls to zero. Once the temperature of the PEG layer exceeds the melting point, the impact is characterised by a transient maximum indentation and then rebound to an equilibrium position. These too are strongly dependent on temperature.