344 resultados para Medical waste
Resumo:
A microwave reactor system was investigated as a potential technique to maximize sugar yield for the hydrolysis of municipal solid waste for ethanol production. Specifically, dilute acid hydrolysis of a-cellulose and waste cellulosic biomass (grass clippings) with phosphoric acid was undertaken within the microwave reactor system. The experimental data and reaction kinetic analysis indicate that the use of a microwave reactor system can successfully facilitate dilute acid hydrolysis of cellulose and waste cellulosic biomass, producing high yields of total sugars in short reaction times. The maximum yield of reducing sugars was obtained at 7.5% (w/v) phosphoric acid and 160 degrees C, corresponding to 60% of the theoretical total sugars, with a reaction time of 5 min. When using a very low acid concentration (0.4% w/v) for the hydrolysis in the microwave reactor, it was found that 10 g of total sugars/100 g dry mass was produced, which is significant considering the low acid concentration. When hydrolyzing grass clippings using the microwave reactor, the optimum conditions were an acid concentration of 2.5% (w/v), 175 degrees C with a 15 min reaction time, giving 18 g/100 g dry mass of total sugars, with xylose being the sugar with the highest yield. It was observed that pentose sugars were more easily formed but also more easily degraded, these being significantly affected by increases in acid concentration and temperature. Kinetic modeling of the data indicated that the use of microwave heating may account for an increase in reaction rate constant, k(1), found in this study in comparison with conventional systems described in the literature.
Resumo:
In ultra-low data rate wireless sensor networks (WSNs) waking up just to listen to a beacon every superframe can be a major waste of energy. This study introduces MedMAC, a medium access protocol for ultra-low data rate WSNs that achieves significant energy efficiency through a novel synchronisation mechanism. The new draft IEEE 802.15.6 standard for body area networks includes a sub-class of applications such as medical implantable devices and long-term micro miniature sensors with ultra-low power requirements. It will be desirable for these devices to have 10 years or more of operation between battery changes, or to have average current requirements matched to energy harvesting technology. Simulation results are presented to show that the MedMAC allows nodes to maintain synchronisation to the network while sleeping through many beacons with a significant increase in energy efficiency during periods of particularly low data transfer. Results from a comparative analysis of MedMAC and IEEE 802.15.6 MAC show that MedMAC has superior efficiency with energy savings of between 25 and 87 for the presented scenarios. © 2011 The Institution of Engineering and Technology.
Resumo:
This study reports the physicochemical and drug diffusion properties of rifampicin containing poly(epsilon-caprolactone) (PCL)/polyethylene glycol (PEG) networks, designed as bioactive biomaterials. Uniquely, the effects of the states of both rifampicin and PEG and the interplay between these components on these properties are described. PCL matrices containing rifampicin (1-5%, w/w) and PEG 200 (0-15%, w/w) were prepared by casting from an organic solvent (dichloromethane). The films were subsequently characterized in terms of their thermal/thermorheological, surface and tensile properties, biodegradation and drug diffusion/release properties. Incorporation of PEG and/or rifampicin significantly affected the tensile and surface properties of PCL, lowering the ultimate tensile strength, % elongation at break, Young modulus and storage and loss moduli. Both in the absence and presence of PEG, solubilisation of rifampicin within the crystalline domains of PCL was observed. PEG was present as a dispersed liquid phase. The release of rifampicin (3% loading) was unaffected by the presence of PEG. Similarly the release of rifampicin (5%) was unaffected by low concentrations of PEG (5-10%) however, at higher loadings, the release rate of rifampicin was enhanced by the presence of PEG. Rifampicin release (10% loading) was enhanced by the presence of PEG in a concentration dependent fashion. These observations were accredited to enhanced porosity of the matrix. In all cases, diffusion-controlled release of rifampicin occurred which was unaffected by polymer degradation. This study has uniquely illustrated the effect of hydrophilic pore formers on the physicochemical properties of PCL. Interestingly, enhanced diffusion controlled release was only observed from biomaterials containing high loadings of PEG and rifampicin (5, 10%), concentrations that were shown to affect the mechanical properties of the biomaterials. Care should therefore be shown when adopting this strategy to enhance release of bioactive agents from biomaterials. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The survival of pathogenic bacteria was investigated during the operation of a full-scale anaerobic digester which was fed daily and operated at 28-degrees-C. The digester had a mean hydraulic retention time of 24 d. The viable numbers of Escherichia coli, Salmonella typhimurium, Yersinia enterocolitica, Listeria monocytogenes and Campylobacter jejuni were reduced during mesophilic anaerobic digestion. Escherichia coli had the smallest mean viable numbers at each stage of the digestion process. Its mean T90 value was 76-9 d. Yersinia enterocolitica was the least resistant to the anaerobic digester environment; its mean T90 value was 18.2 d. Campylobacter jejuni was the most resistant bacterium; its mean T90 value was 438.6 d. Regression analysis showed that there were no direct relationships between the slurry input and performance of the digester and the decline of pathogen numbers during the 140 d experimental period.