146 resultados para Mathematical operators


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bdellovibrio bacteriovorus is a small, gram-negative, motile bacterium that preys upon other gram-negative bacteria, including several known human pathogens. Its predation efficiency is usually studied in pure cultures containing solely B. bacteriovorus and a suitable prey. However, in natural environments, as well as in any possible biomedical uses as an antimicrobial, Bdellovibrio is predatory in the presence of diverse decoys, including live nonsusceptible bacteria, eukaryotic cells, and cell debris. Here we gathered and mathematically modeled data from three-member cultures containing predator, prey, and nonsusceptible bacterial decoys. Specifically, we studied the rate of predation of planktonic late-log-phase Escherichia coli S17-1 prey by B. bacteriovorus HD100, both in the presence and in the absence of Bacillus subtilis nonsporulating strain 671, which acted as a live bacterial decoy. Interestingly, we found that although addition of the live Bacillus decoy did decrease the rate of Bdellovibrio predation in liquid cultures, this addition also resulted in a partially compensatory enhancement of the availability of prey for predation. This effect resulted in a higher final yield of Bdellovibrio than would be predicted for a simple inert decoy. Our mathematical model accounts for both negative and positive effects of predator-prey-decoy interactions in the closed batch environment. In addition, it informs considerations for predator dosing in any future therapeutic applications and sheds some light on considerations for modeling the massively complex interactions of real mixed bacterial populations in nature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Economic dispatch (ED) problems often exhibit non-linear, non-convex characteristics due to the valve point effects. Further, various constraints and factors, such as prohibited operation zones, ramp rate limits and security constraints imposed by the generating units, and power loss in transmission make it even more challenging to obtain the global optimum using conventional mathematical methods. Meta-heuristic approaches are capable of solving non-linear, non-continuous and non-convex problems effectively as they impose no requirements on the optimization problems. However, most methods reported so far mainly focus on a specific type of ED problems, such as static or dynamic ED problems. This paper proposes a hybrid harmony search with arithmetic crossover operation, namely ACHS, for solving five different types of ED problems, including static ED with valve point effects, ED with prohibited operating zones, ED considering multiple fuel cells, combined heat and power ED, and dynamic ED. In this proposed ACHS, the global best information and arithmetic crossover are used to update the newly generated solution and speed up the convergence, which contributes to the algorithm exploitation capability. To balance the exploitation and exploration capabilities, the opposition based learning (OBL) strategy is employed to enhance the diversity of solutions. Further, four commonly used crossover operators are also investigated, and the arithmetic crossover shows its efficiency than the others when they are incorporated into HS. To make a comprehensive study on its scalability, ACHS is first tested on a group of benchmark functions with a 100 dimensions and compared with several state-of-the-art methods. Then it is used to solve seven different ED cases and compared with the results reported in literatures. All the results confirm the superiority of the ACHS for different optimization problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virtual topology operations have been utilized to generate an analysis topology definition suitable for downstream mesh generation. Detailed descriptions are provided for virtual topology merge and split operations for all topological entities, where virtual decompositions are robustly linked to the underlying geometry. Current virtual topology technology is extended to allow the virtual partitioning of volume cells. A valid description of the topology, including relative orientations, is maintained which enables downstream interrogations to be performed on the analysis topology description, such as determining if a specific meshing strategy can be applied to the virtual volume cells. As the virtual representation is a true non-manifold description of the sub-divided domain the interfaces between cells are recorded automatically. Therefore, the advantages of non-manifold modelling are exploited within the manifold modelling environment of a major commercial CAD system without any adaptation of the underlying CAD model. A hierarchical virtual structure is maintained where virtual entities are merged or partitioned. This has a major benefit over existing solutions as the virtual dependencies here are stored in an open and accessible manner, providing the analyst with the freedom to create, modify and edit the analysis topology in any preferred sequence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This book provides a comprehensive tutorial on similarity operators. The authors systematically survey the set of similarity operators, primarily focusing on their semantics, while also touching upon mechanisms for processing them effectively.

The book starts off by providing introductory material on similarity search systems, highlighting the central role of similarity operators in such systems. This is followed by a systematic categorized overview of the variety of similarity operators that have been proposed in literature over the last two decades, including advanced operators such as RkNN, Reverse k-Ranks, Skyline k-Groups and K-N-Match. Since indexing is a core technology in the practical implementation of similarity operators, various indexing mechanisms are summarized. Finally, current research challenges are outlined, so as to enable interested readers to identify potential directions for future investigations.

In summary, this book offers a comprehensive overview of the field of similarity search operators, allowing readers to understand the area of similarity operators as it stands today, and in addition providing them with the background needed to understand recent novel approaches.