213 resultados para Mary Frances Wickliffe
Resumo:
Chemoresistance is a major contributor to the aggressiveness of AML and is often due to insufficient apoptosis. The CFLAR gene is expressed as long and short splice forms encoding the anti-apoptotic proteins c-FLIP(L) and c-FLIP(S) (CFLAR(L) and CFLAR(S) , respectively) that play important roles in drug resistance. In univariate analyses of CFLAR mRNA expression in adult AML patients, those individuals with higher than median mRNA expression of the long splice form CFLAR(L) (but not the short splice form) had significantly lower 3 year overall survival (P = 0·04) compared to those with low expression. In cell line studies, simultaneous down-regulation of c-FLIP(L) and c-FLIP(S) proteins using siRNA induced apoptosis in U937 and NB-4 AML cells, but not K562 or OCI-AML3 cells. However, dual c-FLIP(L/S) downregulation sensitized all four cell lines to apoptosis induced by recombinant tumour necrosis factor-related apoptosis-inducing ligand (rTRAIL). Moreover, specific downregulation of c-FLIP(L) was found to recapitulate the phenotypic effects of dual c-FLIP(L/S) downregulation. The histone deacetylase (HDAC)1/2/3/6 inhibitor Vorinostat was found to potently down-regulate c-FLIP(L) expression by transcriptional and post-transcriptional mechanisms and to sensitize AML cells to rTRAIL. Further analyses using more selective HDAC inhibitors revealed that HDAC6 inhibition was not required for c-FLIP(L) down-regulation. These results suggest that c-FLIP(L) may have clinical relevance both as a prognostic biomarker and potential therapeutic target for HDAC inhibitors in AML although this requires further study.
Resumo:
An erythrocytosis occurs when there is an increased red-cell mass. The causes of erythrocytosis are divided into primary, when there is an intrinsic defect in the erythroid cell, and secondary, when the cause is extrinsic to the erythroid cell. An idiopathic erythrocytosis occurs when the increased red-cell mass has no identifiable cause. Primary and secondary defects can be further classified as either congenital or acquired causes. The diagnostic pathway starts with a careful history and examination followed by measurement of the erythropoietin (EPO) levels. This allows a division of those patients with a low EPO level, who can then be investigated for primary causes of erythrocytosis, and those with a normal or high EPO level, where the oxygen-sensing pathway needs to be explored further. Physiological studies in those with congenital defects in the oxygen-sensing pathway show many changes in the downstream metabolism adapting to the defect, which has a bearing on the management of the disorders. Low-dose aspirin and venesection to an achievable target are the main therapeutic options that can be considered in the management of erythrocytosis. Specific guidance on venesection options should be considered with certain causes such as high oxygen-affinity hemoglobins.
Resumo:
Congenital Erythrocytosis (CE), or congenital polycythemia, represents a rare and heterogeneous clinical entity. It is caused by deregulated red blood cell production where erythrocyte overproduction results in elevated hemoglobin and hematocrit levels. Primary congenital familial erythrocytosis is associated with low erythropoietin (Epo) levels and results from mutations in the Epo receptor gene (EPOR). Secondary congenital erythrocytosis arises from conditions causing tissue hypoxia and results in increased Epo production. These include hemoglobin variants with increased affinity for oxygen (HBB, HBA mutations), decreased production of 2,3-bisphosphoglycerate due to BPGM mutations, or mutations in the genes involved in the hypoxia sensing pathway (VHL, EPAS1 and EGLN1). Depending on the affected gene, CE can be inherited either in an autosomal dominant or recessive mode, with sporadic cases arising de novo. Despite recent important discoveries in the molecular pathogenesis of CE, the molecular causes remain to be identified in about 70% of the patients. With the objective of collecting all the published and unpublished cases of CE the COST action MPN&MPNr-Euronet developed a comprehensive internet-based database focusing on the registration of clinical history, hematological, biochemical and molecular data (http://www.erythrocytosis.org/). In addition, unreported mutations are also curated in the corresponding Leiden Open Variation Database (LOVD). This article is protected by copyright. All rights reserved.
Resumo:
Introduction: Antigenic stimulation is a proposed aetiologic mechanism for many haematological malignancies. Limited evidence suggests that community-acquired infections may increase the risk of acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS). However, associations with other myeloid malignancies including chronic myeloid leukaemia (CML) and myeloproliferative neoplasms (MPNs) are unknown.
Materials and methods: Using the Surveillance, Epidemiology and End Result (SEER)-Medicare database, fourteen community-acquired infections were compared between myeloid malignancy patients [AML (n=8489), CML (n=3626) diagnosed 1992-2005; MDS (n=3072) and MPNs (n=2001) diagnosed 2001-2005; and controls (200,000 for AML/CML and 97,681 for MDS/MPN]. Odds ratios (ORs) and 95% confidence intervals were adjusted for gender, age and year of selection excluding infections diagnosed in the 13-month period prior to selection to reduce reverse causality.
Results: Risk of AML and MDS respectively, were significantly associated with respiratory tract infections, bronchitis (ORs 1.20 [95% CI: 1.14-1.26], 1.25 [95% CI: 1.16-1.36]), influenza (ORs 1.16 [95% CI: 1.07-1.25], 1.29 [95% CI: 1.16-1.44]), pharyngitis (ORs 1.13 [95% CI: 1.06-1.21], 1.22 [95% CI: 1.11-1.35]), pneumonia (ORs 1.28 [95% CI: 1.21-1.36], 1.52 [95% CI: 1.40-1.66]), sinusitis (ORs 1.23 [95% CI: 1.16-1.30], 1.25 [95% CI: 1.15-1.36]) as was cystitis (ORs 1.13 [95% CI: 1.07-1.18], 1.26 [95% CI: 1.17-1.36]). Cellulitis (OR 1.51 [95% CI: 1.39-1.64]), herpes zoster (OR 1.31 [95% CI: 1.14-1.50]) and gastroenteritis (OR 1.38 [95% CI: 1.17-1.64]) were more common in MDS patients than controls. For CML, associations were limited to bronchitis (OR 1.21 [95% CI: 1.12-1.31]), pneumonia (OR 1.49 [95% CI: 1.37-1.62]), sinusitis (OR 1.19 [95% CI: 1.09-1.29]) and cellulitis (OR 1.43 [95% CI: 1.32-1.55]) following Bonferroni correction. Only cellulitis (OR 1.34 [95% CI: 1.21-1.49]) remained significant in MPN patients. Many infections remained elevated when more than 6 years of preceding claims data were excluded.
Discussion: Common community-acquired infections may be important in the malignant transformation of the myeloid lineage. Differences in the aetiology of classic MPNs and other myeloid malignancies require further exploration.
Resumo:
Sixty patients with early chronic phase CML (ECPCML) received Nilotinib on a phase II study which included a comparison of the Xpert BCR-ABL Monitor™ PCR system with standardized (IS) BCR-ABL1 real-time quantitative PCR (RQ-PCR). 88% patients achieved MMR with 45% achieving MR4.5. At 3 months BCR-ABL1/ABL1 IS >1% and
Resumo:
YKL-40 regulates vascular endothelial growth factors and induces tumor proliferation. We investigated YKL-40 before and after treatment with vorinostat in 31 polycythemia vera (PV) and 16 essential thrombocythemia (ET) patients. Baseline PV patient levels were 2 times higher than in healthy controls (P < 0.0001) and 1.7 times higher than in ET (P = 0.02). A significant correlation between YKL-40 at baseline and neutrophils, CRP, LDH, JAK2V617F and platelets in PV patients was observed, as well as a significantly greater reduction of YKL-40 levels in PV patients responding to therapy. YKL-40 might be a novel marker of disease burden and progression in myeloproliferative neoplasms.
Resumo:
Myeloproliferative neoplasms (MPNs) are a heterogeneous group of diseases including polycythemia vera (PV), essential thrombocythemia (ET), and primary(idiopathic) myelofibrosis (PMF). In this systematic review, we provide a comprehensive report on the incidence and prevalence of MPNs across the globe. Electronic databases (PubMed, EMBASE, MEDLINE, and Web of Science) were searched from their inception to August 2012 for articles reporting MPN incidence or prevalence rates. A random effects meta-analysis was undertaken to produce combined incidence rates for PV, ET, and PMF. Both heterogeneity and small study bias were assessed. Thirty-four studies were included. Reported annual incidence rates ranged from 0.01 to 2.61, 0.21 to 2.27, and 0.22 to 0.99 per 100,000 for PV, ET, and PMF, respectively. The combined annual incidence rates for PV, ET, and PMF were 0.84, 1.03, and 0.47 per 100,000. There was high heterogeneity across disease entities (I(2) 97.1-99.8%) and evidence of publication bias for ET and PMF (Egger test, P = 50.007 and P ≤ 0.001, respectively).The pooled incidence reflects the rarity of MPNs. The calculated pooled incidence rates do not reflect MPN incidence across the globe due to the high unexplained heterogeneity. Improved, widespread registration of MPNs would provide better information for global comparison of the incidence and prevalence of MPNs.