178 resultados para Many-valued logic
Resumo:
On 26 December 2003 an Israeli activist was shot by the Israeli Army while he was participating in a demonstration organized by Anarchists Against the Wall (AAtW) in the West Bank. This was the first time Israeli Soldiers have deliberately shot live bullets at a Jewish-Israeli activist. This paper is an attempt to understand the set of conditions, the enveloping frameworks, and the new discourses that have made this event, and similar shootings that soon followed, possible. Situating the actions of AAtW within a much wider context of securitization—of identities, movements, and bodies—we examine strategies of resistance which are deployed in highly securitized public spaces. We claim that an unexpected matrix of identity in which abnormality is configured as security threat render the bodies of activists especially precarious. The paper thus provides an account of the new rationales of security technologies and tactics which increasingly govern public spaces.
Resumo:
Highly excited eigenstates of atoms and ions with open f shell are chaotic superpositions of thousands, or even millions, of Hartree-Fock determinant states. The interaction between dielectronic and multielectronic configurations leads to the broadening of dielectronic recombination resonances and relative enhancement of photon emission due to opening of thousands of radiative decay channels. The radiative yield is close to 100% for electron energy <1 eV and rapidly decreases for higher energies due to opening of many autoionization channels. The same mechanism predicts suppression of photoionization and relative enhancement of the Raman scattering. Results of our calculations of the recombination rate are in agreement with the experimental data for W20+ and Au25+.
Resumo:
Molecular logic-based computation is a broad umbrella covering molecular sensors at its simplest level and logic gate arrays involving steadily increasing levels of parallel and serial integration. The fluorescent PET(photoinduced electron transfer) switching principle remains a loyal servant of this entire field. Applications arise from the convenient operation of molecular information processors in very small spaces.
Resumo:
Background: Oncology is a field that profits tremendously from the genomic data generated by high-throughput technologies, including next-generation sequencing. However, in order to exploit, integrate, visualize and interpret such high-dimensional data efficiently, non-trivial computational and statistical analysis methods are required that need to be developed in a problem-directed manner.
Discussion: For this reason, computational cancer biology aims to fill this gap. Unfortunately, computational cancer biology is not yet fully recognized as a coequal field in oncology, leading to a delay in its maturation and, as an immediate consequence, an under-exploration of high-throughput data for translational research.
Summary: Here we argue that this imbalance, favoring 'wet lab-based activities', will be naturally rectified over time, if the next generation of scientists receives an academic education that provides a fair and competent introduction to computational biology and its manifold capabilities. Furthermore, we discuss a number of local educational provisions that can be implemented on university level to help in facilitating the process of harmonization.
Resumo:
Genetically-engineered bacteria and reactive DNA networks detect edges of objects, as done in our retinas and as also found within computer vision. We now demonstrate that simple molecular logic systems (a combination of a pH sensor, a photo acid generator and a pH buffer spread on paper) without any organization can achieve this relatively complex computational goal with good-fidelity. This causes a jump in the complexity achievable by molecular logic-based computation and extends its applicability. The molecular species involved in light dose-driven 'off-on-off' fluorescence is diverted in the ‘on’ state by proton diffusion from irradiated to unirradiated regions where it escapes a strong quencher, thus visualizing the edge of a mask.
Resumo:
Kuznetsov independence of variables X and Y means that, for any pair of bounded functions f(X) and g(Y), E[f(X)g(Y)]=E[f(X)] *times* E[g(Y)], where E[.] denotes interval-valued expectation and *times* denotes interval multiplication. We present properties of Kuznetsov independence for several variables, and connect it with other concepts of independence in the literature; in particular we show that strong extensions are always included in sets of probability distributions whose lower and upper expectations satisfy Kuznetsov independence. We introduce an algorithm that computes lower expectations subject to judgments of Kuznetsov independence by mixing column generation techniques with nonlinear programming. Finally, we define a concept of conditional Kuznetsov independence, and study its graphoid properties.
Resumo:
We examine the representation of judgements of stochastic independence in probabilistic logics. We focus on a relational logic where (i) judgements of stochastic independence are encoded by directed acyclic graphs, and (ii) probabilistic assessments are flexible in the sense that they are not required to specify a single probability measure. We discuss issues of knowledge representation and inference that arise from our particular combination of graphs, stochastic independence, logical formulas and probabilistic assessments.
Resumo:
This paper investigates probabilistic logics endowed with independence relations. We review propositional probabilistic languages without and with independence. We then consider graph-theoretic representations for propositional probabilistic logic with independence; complexity is analyzed, algorithms are derived, and examples are discussed. Finally, we examine a restricted first-order probabilistic logic that generalizes relational Bayesian networks.
Resumo:
This paper explores semi-qualitative probabilistic networks (SQPNs) that combine numeric and qualitative information. We first show that exact inferences with SQPNs are NPPP-Complete. We then show that existing qualitative relations in SQPNs (plus probabilistic logic and imprecise assessments) can be dealt effectively through multilinear programming. We then discuss learning: we consider a maximum likelihood method that generates point estimates given a SQPN and empirical data, and we describe a Bayesian-minded method that employs the Imprecise Dirichlet Model to generate set-valued estimates.
Resumo:
In this paper, we compare merging operators in possibilistic logic. We rst propose an approach to evaluating the discriminating power of a merging operator. After that, we analyze the computational complexity of existing possibilistic merging operators. Finally, we consider the compatibility of possibilistic merging operators with propositional merging operators.