142 resultados para MICRODISK ARRAY ELECTRODE
Resumo:
A new strategy for remote reconfiguration of an antenna array far field radiation pattern is described. The scheme uses a pilot tone co-transmitted with a carrier signal from a location distant from that of a receive antenna array whose far field pattern is to be reconfigured. By mixing the co-transmitted signals locally at each antenna element in the array an IF signal is formed which defines an equivalent array spacing that can be made variable by tuning the frequency of the pilot tone with respect to the RF carrier. This makes the antenna array factor hence far field spatial characteristic reconfigurable on receive. For a 10 x 1 microstrip patch element array we show that the receive pattern can be made to vary from 35 to 10 degrees half power beam width as the difference frequency between the pilot and the carrier at 2.45 GHz varies between 10 MHz and 500 MHz carrier.
Resumo:
Epitaxial (001)-oriented 0.7Pb(Mg0.33Nb0.67)O3-0.3PbTiO3 (PMN-PT) thin films were deposited by pulsed laser deposition on vicinal SrTiO3 (001) substrates using La0.7Sr0.3MnO3 as bottom electrode. Detailed microstructural investigations of these films were carried out using X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM). Polarization-field hysteresis curves were measured at room temperature. Spontaneous polarization P s , remnant polarization P r and coercive voltage V c were found to be 25 μC/cm2, 15 μC/cm2 and 0.81 V, respectively. Field dependent dielectric constant measurements exhibited butterfly shaped curves, indicating the true ferroelectric nature of these films at room temperature. The dielectric constant and the dielectric loss at 100 kHz were found to be 238 and 0.14, respectively. The local piezoelectric properties of PMN-PT films were investigated by piezoelectric force microscopy and were found to exhibit a local piezoelectric coefficient of 7.8 pm/V.
Resumo:
The influence of an electrically inhomogeneous epitaxial bottom layer on the ferroelectric and electrical properties has been explored in epitaxial PbTiO3 (PTO)/La0.7Sr0.3MnO3 (LSMO) submicron structures using atomic force microscopy. The submicron LSMO-dot structures underneath the ferroelectric PTO film allow exploring gradual changes in material properties. The LSMO interfacial layer influences significantly both electrical and ferroelectric properties of the upper PTO layer. The obtained results show that the as-grown polarization state of an epitaxial ferroelectric layer is strongly influenced by the properties of the layer on top of which it is deposited. (C) 2013 AIP Publishing LLC.
Resumo:
To develop a detection method for human pathogenic Listeria monocytogenes, novel specific antibodies were obtained from hybridoma libraries generated by using formalin-killed and heat-killed L. monocytogenes as immunogens. Several monoclonal antibodies found to be specific to Listeria spp or L. monocytogenes were evaluated for their applicability as binders for bead array and sandwichELISA for detection of L. monocytogenes in buffer and in 11 different food types. The bead array format consistently demonstrated lower detection limits and was less affected by interference from food matrices than the sandwich ELISA format. However, the obtained detection limits were not sufficient to satisfy the required standard for L. monocytogenes testing. Therefore, the international organizationfor standardization (ISO 11290-1:1996) methods for pre-enrichment and enrichment were employed to increase the bacteria numbers. When compared to the standard plating method, the bead array was able to detect the bacteria with the same accuracy even at the 1 CFU level after only 24 hours of the enrichment period. In addition, Listeria-specific 3C3 and L. monocytogenes-specific 7G4 antibodies were successfully employed to construct a multiplex detection for Listeria, Salmonella and Campylobacter in a bead array format by combining with commercial Salmonella-specific and available Campylobacter-specific antibodies.
Resumo:
The finite difference time domain (FDTD) method has direct applications in musical instrument modeling, simulation of environmental acoustics, room acoustics and sound reproduction paradigms, all of which benefit from auralization. However, rendering binaural impulse responses from simulated
data is not straightforward to accomplish as the calculated pressure at FDTD grid nodes does not contain any directional information. This paper addresses this issue by introducing a spherical array to capture sound pressure on a finite difference grid, and decomposing it into a plane-wave density
function. Binaural impulse responses are then constructed in the spherical harmonics domain by combining the decomposed grid data with free field head-related transfer functions. The effects of designing a spherical array in a Cartesian grid are studied, and emphasis is given to the relationships
between array sampling and the spatial and spectral design parameters of several finite-difference
schemes.