389 resultados para Laser Produced Plasma


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Laser plasma interferograms are currently analyzed by extraction of the phase-shift map with fast Fourier transform (FFT) techniques [Appl. Opt. 18, 3101 (1985)]. This methodology works well when interferograms are only marginally affected by noise and reduction of fringe visibility, but it can fail to produce accurate phase-shift maps when low-quality images are dealt with. We present a novel procedure for a phase-shift map computation that makes extensive use of the ridge extraction in the continuous wavelet transform (CWT) framework. The CWT tool is flexible because of the wide adaptability of the analyzing basis, and it can be accurate because of the intrinsic noise reduction in the ridge extraction. A comparative analysis of the accuracy performances of them new tool and the FFT-based one shows that the CWT-based tool produces phase maps considerably less noisy and that it can better resolve local inhomogeneties. (C) 2001 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have observed extreme-ultraviolet (XUV) ''line-free'' continuum emission from laser plasmas of high atomic number elements using targets irradiated with 248 nm laser pulses of 7 ps duration at a power density of similar to 10(13) W/cm(2). Using both dispersive spectroscopy and streak camera detection, the spectral and temporal evolution of XUV continuum emission for several target atomic numbers has been measured on a time scale with an upper limit of several hundred picoseconds limited by amplified spontaneous emission. (C) 1997 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The XUV lasing output from one germanium slab target has been efficiently coupled into, and further amplified in, a second plasma produced by irradiation of a similar target from the opposite direction. The operation of such a double target was shown to be strongly dependent on the distance by which the two target surfaces were displaced. The line brightness peaked for a surface displacement of approximately 200-mu-m and it was observed that the pointing direction of one output beam could be controlled by the surface separation in an asymmetric geometry. Gain length products of approximately 16 with estimated output powers close to the megawatt level were achieved on both the 23.2 and 23.6 nm J=2-1 transitions for an optimised target configuration. Maximum effective coupling efficiencies of the individual outputs from double targets, comprising 2.2 and 1.4 cm length components, approached 100% for beams propagating from the shorter to the longer target.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For the first time, the technique of point projection absorption spectroscopy - which uses an intense, point source of X-rays to project and spectrally disperse an image of a plasma onto a detector- has been shown to be applicable to the study of expanding aluminium plasmas generated by approximately 80ps (2-omega) laser pulses. Massive, stripe targets of approximately 125-mu-m width and wire targets of 25-mu-m diameter have been studied. Using a PET Bragg crystal as the dispersive element, a resolving power of approximately 3500 was achieved with spatial resolution at the 5-mu-m level in frame times of the order of 80ps. Reduction of the data for times up to 150ps after the peak of the incident laser pulse produced estimates of the temperature and densities present, as a function of space and time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The properties of beams of high energy protons accelerated during ultraintense, picosecond laser-irradiation of thin foil targets are investigated as a function of preplasma expansion at the target front surface. Significant enhancement in the maximum proton energy and laser-to-proton energy conversion efficiency is observed at optimum preplasma density gradients due, to self-focusing Of the incident laser pulse. For very long preplasma expansion, the propagating laser pulse is observed to filament, resulting in highly uniform proton beams, but with reduced flux and maximum energy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Experiments were performed in which intense laser pulses (up to 9x10(19) W/cm(2)) were used to irradiate very thin (submicron) mass-limited aluminum foil targets. Such interactions generated high-order harmonic radiation (greater than the 25th order) which was detected at the rear of the target and which was significantly broadened, modulated, and depolarized because of passage through the dense relativistic plasma. The spectral modifications are shown to be due to the laser absorption into hot electrons and the subsequent sharply increasing relativistic electron component within the dense plasma.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Proton imaging has become a common diagnostic technique for use in laser-plasma research experiments due to their ability to diagnose electric field effects and to resolve small density differences caused through shock effects. These interactions are highly dependent on the use of radiochromic film (RCF) as a detection system for the particle probe, and produces very high-resolution images. However, saturation effects, and in many cases, damage to the film limits the usefulness of this technique for high-flux particle probing. This paper outlines the use of a new technique using contact radiography of (p,n)-generated isotopes in activation samples to produce high dynamic range 2D images with high spatial resolution and extremely high dynamic range, whilst maintaining both energy resolution and absolute flux measurements. (C)007 Elsevier B.V. All rights reserved.