240 resultados para Lancaster Institution, Southwark, Eng.
Resumo:
In ultra-low data rate wireless sensor networks (WSNs) waking up just to listen to a beacon every superframe can be a major waste of energy. This study introduces MedMAC, a medium access protocol for ultra-low data rate WSNs that achieves significant energy efficiency through a novel synchronisation mechanism. The new draft IEEE 802.15.6 standard for body area networks includes a sub-class of applications such as medical implantable devices and long-term micro miniature sensors with ultra-low power requirements. It will be desirable for these devices to have 10 years or more of operation between battery changes, or to have average current requirements matched to energy harvesting technology. Simulation results are presented to show that the MedMAC allows nodes to maintain synchronisation to the network while sleeping through many beacons with a significant increase in energy efficiency during periods of particularly low data transfer. Results from a comparative analysis of MedMAC and IEEE 802.15.6 MAC show that MedMAC has superior efficiency with energy savings of between 25 and 87 for the presented scenarios. © 2011 The Institution of Engineering and Technology.
Resumo:
In this study, the authors provide experimental characterisation of the field location effects that occur within a reverberant environment. This is achieved using a single active analogue phase conjugating unit positioned within a reverberant chamber. The authors demonstrate significant spatial focusing of ON-OFF-keyed 2.4 GHz signals. Furthermore, the effect of polarisation randomisation within such environments is discussed and it is shown that the system is highly tolerant of antenna orientation and does not require line of sight for its operation. © 2012 The Institution of Engineering and Technology.
Resumo:
Bromate in drinking water, at a level of microgrammes/litre, is a problem in ozonated waters but can be adsorbed, to a certain extent, by granular activated carbon. The adsorption capacity of granular activated carbon for bromate is significantly lowered when there are high concentrations of other anions, most notably chloride and sulphate, present in the water.
Resumo:
The use of two separate ultraintense laser pulses in laser-proton acceleration was compared to the single pulse case employing the same total laser energy. A double pulse profile, with the temporal separation of the pulses varied between 0.75-2.5 ps, was shown to result in an increased maximum proton energy and an increase in conversion efficiency to fast protons by up to a factor of 3.3. Particle-in-cell simulations indicate the existence of a two stage acceleration process. The second phase, induced by the main pulse preferentially accelerates slower protons located deeper in the plasma, in contrast to conventional target normal sheath acceleration.
Resumo:
We demonstrate experimentally that the relativistic electron flow in a dense plasma can be efficiently confined and guided in targets exhibiting a high-resistivity-core-low-resistivity-cladding structure analogous to optical waveguides. The relativistic electron beam is shown to be confined to an area of the order of the core diameter (50 mu m), which has the potential to substantially enhance the coupling efficiency of electrons to the compressed fusion fuel in the Fast Ignitor fusion in full-scale fusion experiments.
Resumo:
A number of experiments have been undertaken at the Rutherford Appleton Laboratory that were designed to investigate the physics of fast electron transport relevant to fast ignition inertial fusion. The laser, operating at a wavelength of 1054 nm, provided pulses of up to 350 J of energy on target in a duration that varied in the range 0.5-5 ps and a focused intensity of up to 10(21) W cm(-2). A dependence of the divergence of the fast electron beam with intensity on target has been identified for the first time. This dependence is reproduced in two-dimensional particle-in-cell simulations and has been found to be an intrinsic property of the laser-plasma interaction. A number of ideas to control the divergence of the fast electron beam are described. The fractional energy transfer to the fast electron beam has been obtained from calibrated, time-resolved, target rear-surface radiation temperature measurements. It is in the range 15-30%, increasing with incident laser energy on target. The fast electron temperature has been measured to be lower than the ponderomotive potential energy and is well described by Haines' relativistic absorption model.
Resumo:
Fast electron energy spectra have been measured for a range of intensities between 10(18) and 10(21) W cm(-2) and for different target materials using electron spectrometers. Several experimental campaigns were conducted on petawatt laser facilities at the Rutherford Appleton Laboratory and Osaka University, where the pulse duration was varied from 0.5 to 5 ps relevant to upcoming fast ignition integral experiments. The incident angle was also changed from normal incidence to 40 degrees in p-polarized. The results confirm a reduction from the ponderomotive potential energy on fast electrons at the higher intensities under the wide range of different irradiation conditions.
Resumo:
Metal foil targets were irradiated with 1 mu m wavelength (lambda) laser pulses of 5 ps duration and focused intensities (I) of up to 4x10(19) W cm(-2), giving values of both I lambda(2) and pulse duration comparable to those required for fast ignition inertial fusion. The divergence of the electrons accelerated into the target was determined from spatially resolved measurements of x-ray K-alpha emission and from transverse probing of the plasma formed on the back of the foils. Comparison of the divergence with other published data shows that it increases with I lambda(2) and is independent of pulse duration. Two-dimensional particle-in-cell simulations reproduce these results, indicating that it is a fundamental property of the laser-plasma interaction.
Resumo:
K-alpha x-ray emission, extreme ultraviolet emission, and plasma imaging techniques have been used to diagnose energy transport patterns in copper foils ranging in thickness from 5 to 75 mu m for intensities up to 5x10(20) Wcm(-20). The K-alpha emission and shadowgrams both indicate a larger divergence angle than that reported in the literature at lower intensities [R. Stephens , Phys. Rev. E 69, 066414 (2004)]. Foils 5 mu m thick show triple-humped plasma expansion patterns at the back and front surfaces. Hybrid code modeling shows that this can be attributed to an increase in the mean energy of the fast electrons emitted at large radii, which only have sufficient energy to form a plasma in such thin targets.
Resumo:
Electron energy transport experiments conducted on the Vulcan 100 TW laser facility with large area foil targets are described. For plastic targets it is shown, by the plasma expansion observed in shadowgrams taken after the interaction, that there is a transition between the collimated electron flow previously reported at the 10 TW power level to an annular electron flow pattern with a 20 degrees divergence angle for peak powers of 68 TW. Intermediate powers show that both the central collimated flow pattern and the surrounding annular-shaped heated region can co-exist. The measurements are consistent with the Davies rigid beam model for fast electron flow (Davies 2003 Phys. Rev. E 68 056404) and LSP modelling provides additional insight into the observed results.
Resumo:
Neutron time of flight signals have been observed with a high resolution neutron spectrometer using the petawatt arm of the Vulcan laser facility at Rutherford Appleton Laboratory from plastic sandwich targets containing a deuterated layer. The neutron spectra have two elements: a high-energy component generated by beam-fusion reactions and a thermal component around 2.45 MeV. The ion temperatures calculated from the neutron signal width clearly demonstrate a dependence on the front layer thickness and are significantly higher than electron temperatures measured under similar conditions. The ion heating process is intensity dependent and is not observed with laser intensities on target below 10(20) W cm(-2). The measurements are consistent with an ion instability driven by electron perturbations.
Resumo:
Investigations of Li-7(p,n)Be-7 reactions using Cu and CH primary and LiF secondary targets were performed using the VULCAN laser [C.N. Danson , J. Mod. Opt. 45, 1653 (1997)] with intensities up to 3x10(19) W cm(-2). The neutron yield was measured using CR-39 plastic track detector and the yield was up to 3x10(8) sr(-1) for CH primary targets and up to 2x10(8) sr(-1) for Cu primary targets. The angular distribution of neutrons was measured at various angles and revealed a relatively anisotropic neutron distribution over 180degrees that was greater than the error of measurement. It may be possible to exploit such reactions on high repetition, table-top lasers for neutron radiography. (C) 2004 American Institute of Physics.