169 resultados para Insert auto-formant in situ


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proliferation of mobile devices in society accessing data via the ‘cloud’ is imposing a dramatic increase in the amount of information to be stored on hard disk drives (HDD) used in servers. Forecasts are that areal densities will need to increase by as much as 35% compound per annum and by 2020 cloud storage capacity will be around 7 zettabytes corresponding to areal densities of 2 Tb/in2. This requires increased performance from the magnetic pole of the electromagnetic writer in the read/write head in the HDD. Current state-of-art writing is undertaken by morphologically complex magnetic pole of sub 100 nm dimensions, in an environment of engineered magnetic shields and it needs to deliver strong directional magnetic field to areas on the recording media around 50 nm x 13 nm. This points to the need for a method to perform direct quantitative measurements of the magnetic field generated by the write pole at the nanometer scale. Here we report on the complete in situ quantitative mapping of the magnetic field generated by a functioning write pole in operation using electron holography. Opportunistically, it points the way towards a new nanoscale magnetic field source to further develop in situ Transmission Electron Microscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes an in situ diagnostic and prognostic (D&P) technology to monitor the health condition of insulated gate bipolar transistors (IGBTs) used in EVs with a focus on the IGBTs' solder layer fatigue. IGBTs' thermal impedance and the junction temperature can be used as health indicators for through-life condition monitoring (CM) where the terminal characteristics are measured and the devices' internal temperature-sensitive parameters are employed as temperature sensors to estimate the junction temperature. An auxiliary power supply unit, which can be converted from the battery's 12-V dc supply, provides power to the in situ test circuits and CM data can be stored in the on-board data-logger for further offline analysis. The proposed method is experimentally validated on the developed test circuitry and also compared with finite-element thermoelectrical simulation. The test results from thermal cycling are also compared with acoustic microscope and thermal images. The developed circuitry is proved to be effective to detect solder fatigue while each IGBT in the converter can be examined sequentially during red-light stopping or services. The D&P circuitry can utilize existing on-board hardware and be embedded in the IGBT's gate drive unit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the labile status of phosphorus (P) in sediments is crucial for managing a eutrophic lake, but it is hindered by lacking in situ data particularly on a catchment scale. In this study, we for the first time characterized in situ labile P in sediments with the Zr-oxide diffusive gradients in thin films (Zr-oxide DGT) technique at a two-dimensional (2D), submillimeter resolution in a large eutrophic lake (Lake Taihu, China, with an area of 2338km2). The concentration of DGT-labile P in the sediment profiles showed strong variation mostly ranging from 0.01 to 0.35mgL-1 with a considerable number of hotspots. The horizontal heterogeneity index of labile P varied from 0.04 to 4.5. High values appeared at the depths of 0-30mm, likely reflecting an active layer of labile P under the sediment-water interface (SWI). Concentration gradients of labile P were observed from the high-resolution 1D DGT profiles in both the sediment and overlying water layers close to the SWI. The apparent diffusion flux of P across the SWI was calculated between -21 and 65ngcm-2d-1, which showed that the sediments tended to be a source and sink of overlying water P in the algal- and macrophyte-dominated regions, respectively. The DGT-labile P in the 0-30mm active layer showed a better correlation with overlying water P than the labile P measured by ex situ chemical extraction methods. It implies that in situ, high-resolution profiling of labile P with DGT is a more reliable approach and will significantly extend our ability in in situ monitoring of the labile status of P in sediments in the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Co-electrolysis of carbon dioxide and steam has been shown to be an efficient way to produce syngas, however further optimisation requires detailed understanding of the complex reactions, transport processes and degradation mechanisms occurring in the solid oxide cell (SOC) during operation. Whilst electrochemical measurements are currently conducted in situ, many analytical techniques can only be used ex situ and may even be destructive to the cell (e.g. SEM imaging of microstructure). In order to fully understand and characterise co-electrolysis, in situ monitoring of the reactants, products and SOC is necessary. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) is ideal for in situ monitoring of co-electrolysis as both gaseous and adsorbed CO and CO2 species can be detected, however it has previously not been used for this purpose. The challenges of designing an experimental rig which allows optical access alongside electrochemical measurements at high temperature and operates in a dual atmosphere are discussed. The rig developed has thus far been used for symmetric cell testing at temperatures from 450[degree]C to 600[degree]C. Under a CO atmosphere, significant changes in spectra were observed even over a simple Au|10Sc1CeSZ|Au SOC. The changes relate to a combination of CO oxidation, the water gas shift reaction and carbonate formation and decomposition processes, with the dominant process being both potential and temperature dependent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel hand-held instrument capable of real-time in situ detection and identification of heavy metals. The proposed system provides the facilities found in a traditional lab-based instrument in a hand held a design. In contrast to existing commercial systems, it can stand alone without the need of an associated computer. The electrochemical instrument uses anodic stripping voltammetry which is a precise and sensitive analytical method with excellent limits of detection. The sensors comprise disposable screen-printed (solid working) electrodes rather than the more common hanging mercury drop electrodes. The system is reliable, easy to use, safe, avoids expensive and time-consuming procedures and may be used in a variety of situations to help in the fields of environmental assessment and control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of TiO 2 photocatalysis for the destruction of dyes such as methylene blue has been extensively reported. One of the challenges faced in both the laboratory and large scale water treatment plants is the fact that the samples have to be removed from the reactor vessel and the catalyst separated prior to analysis being undertaken. In this paper we report the development of a simple fluorimeter instrument and its use in monitoring the photocatalytic destruction of methylene blue dyes in the presence of catalyst suspensions. The results reported show that the instrument provides an effective method for in situ monitoring of the photocatalytic destruction of fluorescent dyes hence allowing more accurate measurement due to the minimisation of sample loss and cross contamination. Furthermore it also provides a method for real time monitoring of the dye pollutant destruction in large scale photocatalytic reactors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a portable electrochemical instrument capable of detecting and identifying heavy metals in soil, in situ. The instrument has been developed for use in a variety of situations to facilitate contaminated land surveys, avoiding expensive and time-consuming procedures. The system uses differential pulse anodic stripping voltammetry which is a precise and sensitive analytical method with excellent limits of detection. The identification of metals is based on a statistical microprocessor-based method. The instrument is capable of detecting six different toxic metals (lead, cadmium, zinc, nickel, mercury and copper) with good sensitivity

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of Raman and anti-stokes Raman spectroscopy to investigate the effect of exposure to high power laser radiation on the crystalline phases of TiO2 has been investigated. Measurement of the changes, over several time integrals, in the Raman and anti-stokes Raman of TiO2 spectra with exposure to laser radiation is reported. Raman and anti-stokes Raman provide detail on both the structure and the kinetic process of changes in crystalline phases in the titania material. The effect of laser exposure resulted in the generation of increasing amounts of the rutile crystalline phase from the anatase crystalline phase during exposure. The Raman spectra displayed bands at 144 cm-1 (A1g), 197 cm-1 (Eg), 398 cm-1 (B1g), 515 cm-1 (A1g), and 640 cm-1 (Eg) assigned to anatase which were replaced by bands at 143 cm-1 (B1g), 235 cm-1 (2 phonon process), 448 cm-1 (Eg) and 612 cm-1 (A1g) which were assigned to rutile. This indicated that laser irradiation of TiO2 changes the crystalline phase from anatase to rutile. Raman and anti-stokes Raman are highly sensitive to the crystalline forms of TiO2 and allow characterisation of the effect of laser irradiation upon TiO2. This technique would also be applicable as an in situ method for monitoring changes during the laser irradiation process

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents a low-cost portable electrochemical instrument capable of on-site identification of heavy metals. The instrument acquires metal-specific voltage and current signals by the application of differential pulse anodic stripping voltammetry. This technique enhances the analytical current and rejects the background current, resulting in a higher signal-to-noise ratio for a better detection limit. The identification of heavy metals is based on an intelligent machine-based method using a multilayer perceptron neural network consisting of three layers of neurons. The neural network is implemented using a 16 bit microcontroller. The system is developed for use in the field in order to avoid expensive and time-consuming procedures and can be used in a variety of situations to help environmental assessment and control.