139 resultados para IMPULSE-APPROXIMATION CALCULATIONS
Resumo:
We present spectral modeling results for neutral helium. Our underlying atomic data contains radiative transition rates that are generated from atomic structure calculations and electron-impact excitation rates, that are determined from both the standard R-matrix method and the R-matrix with pseudostates RMPS method. In this paper, we focus on transitions of particular importance to diagnostic line ratios. For example, our calculated rate coefficient for the electron-impact transition 1s3s 1S→1s3p 1P, which has a pronounced effect on the 728.1 nm diagnostic spectral line, is found to be in good agreement with previous experimental mea- surements. We also consider transitions from the 1s2 1S ground and 1s2s 3S terms to terms of the n=4 shell. They are found to be affected significantly by coupling of the bound states to the target continuum continuum coupling, which is included in our RMPS calculation, but not in our standard R-matrix calculation. We perform collisional-radiative calculations to determine spectral line intensity ratios for three ratios of particular interest, namely the 504.8 nm/471.3 nm, 492.2 nm/471.3 nm, and 492.2 nm/504.8 nm line ratios. Comparing our results determined from the RMPS excitation rates with those from the standard R-matrix excitation rates, we find that continuum coupling affects the rate coefficients significantly, leading to different values for all three line ratios. We also compare our modeling results with spectral measurements taken recently on the Auburn Helicon plasma device, finding that the ground and metastable populations are not in equilibrium, and that the experimental measurements are more consistent with the 1s2s 3S metastable term populations being short lived in the plasma.
Resumo:
Absolute cross-section measurements for valence-shell photoionization of Ar + ions are reported for photon energies ranging from 27.4 eV to 60.0 eV. The data, taken by merging beams of ions and synchrotron radiation at a photon energy resolution of 10 meV, indicate that the primary ion beam was a statistically weighted mixture of the 2P o3/2 ground state and the 2P o1/2 metastable state of Ar +. Photoionization of this Cell-like ion is characterized by multiple Rydberg series of autoionizing resonances superimposed on a direct photoionization continuum. Observed resonance lineshapes indicate interference between indirect and direct photoionization channels. Resonance features are spectroscopically assigned and their energies and quantum defects are tabulated. The measurements are satisfactorily reproduced by theoretical calculations based on an intermediate coupling semi-relativistic Breit-Pauli approximation.
Resumo:
Aims. We present rates for all E1, E2, M1, and M2 transitions among the 295 fine-structure levels of the configurations 3d9, 3d84s, 3d74s2, 3d84p, and 3d74s4p, determined through an extensive configuration interaction calculation.
Methods. The CIV3 code developed by Hibbert and coworkers is used to determine for these levels configuration interaction wave functions with relativistic effects introduced through the Breit-Pauli approximation.
Results. Two different sets of calculations have been undertaken with different 3d and 4d functions to ascertain the effect of such variation. The main body of the text includes a representative selection of data, chosen so that key points can be discussed. Some analysis to assess the accuracy of the present data has been undertaken, including comparison with earlier calculations and the more limited range of experimental determinations. The full set of transition data is given in the supplementary material as it is very extensive.
Conclusions. We believe that the present transition data are the best currently available.
Resumo:
We calculated the frequency dependent macroscopic dielectric function and second-harmonic generation of cubic ZnS, ZnSe and ZnTe within time-dependent density-polarisation functional theory. The macroscopic dielectric function is calculated in a linear response framework, and second-harmonic generation in a real-time framework. The macroscopic exchange–correlation electric field that enters the time-dependent Kohn–Sham equations and accounts for long range correlation is approximated as a simple polarisation functional αP, where P is the macroscopic polarisation. Expressions for α are taken from the recent literature. The performance of the resulting approximations for the exchange–correlation electric field is analysed by comparing the theoretical spectra with experimental results and results obtained at the levels of the independent particle approximation and the random-phase approximation. For the dielectric function we also compare with state-of-the art calculations at the level of the Bethe–Salpeter equation.