140 resultados para Hyperspectral imaging,


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate cancer (CaP) is the most commonly diagnosed cancer in males. There have been dramatic technical advances in radiotherapy delivery, enabling higher doses of radiotherapy to primary cancer, involved lymph nodes and oligometastases with acceptable normal tissue toxicity. Despite this, many patients relapse following primary radical therapy, and novel treatment approaches are required. Metal nanoparticles are agents that promise to improve diagnostic imaging and image-guided radiotherapy and to selectively enhance radiotherapy effectiveness in CaP. We summarize current radiotherapy treatment approaches for CaP and consider pre-clinical and clinical evidence for metal nanoparticles in this condition.

Prostate cancer (CaP) is the most commonly diagnosed cancer in males and is responsible for more than 10,000 deaths each year in the UK.1 Technical advances in radiotherapy delivery, including image-guided intensity-modulated radiotherapy (IG-IMRT), have enabled the delivery of higher radiation dose to the prostate, which has led to improved biochemical control. Further improvements in cancer imaging during radiotherapy are being developed with the advent of MRI simulators and MRI linear accelerators.2–4

Nanotechnology promises to deliver significant advancements across numerous disciplines.5 The widest scope of applications are from the biomedical field including exogenous gene/drug delivery systems, advanced biosensors, targeted contrast agents for diagnostic applications and as direct therapeutic agents used in combination with existing treatment modalities.6–11 This diversity of application is especially evident within cancer research, with a myriad of experimental anticancer strategies currently under investigation.

This review will focus specifically on the potential of metal-based nanoparticles to augment the efficacy of radiotherapy in CaP, a disease where radiotherapy constitutes a major curative treatment modality.12 Furthermore, we will also address the clinical state of the art for CaP radiotherapy and consider how these treatments could be best combined with nanotherapeutics to improve cancer outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The circumstances in Colombo, Sri Lanka, and in Belfast, Northern Ireland, which led to a) the generalization of luminescent PET (photoinduced electron transfer) sensing/switching as a design tool, b) the construction of a market-leading blood electrolyte analyzer and c) the invention of molecular logic-based computation as an experimental field, are delineated. Efforts to extend the philosophy of these approaches into issues of small object identification, nanometric mapping, animal visual perception and visual art are also outlined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE:

To determine the test-retest variability in perimetric, optic disc, and macular thickness parameters in a cohort of treated patients with established glaucoma.

PATIENTS AND METHODS:

In this cohort study, the authors analyzed the imaging studies and visual field tests at the baseline and 6-month visits of 162 eyes of 162 participant in the Glaucoma Imaging Longitudinal Study (GILS). They assessed the difference, expressed as the standard error of measurement, of Humphrey field analyzer II (HFA) Swedish Interactive Threshold Algorithm fast, Heidelberg retinal tomograph (HRT) II, and retinal thickness analyzer (RTA) parameters between the two visits and assumed that this difference was due to measurement variability, not pathologic change. A statistically significant change was defined as twice the standard error of measurement.

RESULTS:

In this cohort of treated glaucoma patients, it was found that statistically significant changes were 3.2 dB for mean deviation (MD), 2.2 for pattern standard deviation (PSD), 0.12 for cup shape measure, 0.26 mm for rim area, and 32.8 microm and 31.8 microm for superior and inferior macular thickness, respectively. On the basis of these values, it was estimated that the number of potential progression events detectable in this cohort by the parameters of MD, PSD, cup shape measure, rim area, superior macular thickness, and inferior macular thickness was 7.5, 6.0, 2.3, 5.7, 3.1, and 3.4, respectively.

CONCLUSIONS:

The variability of the measurements of MD, PSD, and rim area, relative to the range of possible values, is less than the variability of cup shape measure or macular thickness measurements. Therefore, the former measurements may be more useful global measurements for assessing progressive glaucoma damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel microwave high-resolution near-field imaging technique is proposed and experimentally evaluated in reflectometry imaging scenarios involving planar metal-dielectric structures. Two types of resonance near field probes-a small helix antenna and a loaded subwavelength slot aperture are studied in this paper. These probes enable very tight spatial field localization with the full width at half maximum around one tenth of a wavelength, λ, at λ/100-λ/10 standoff distance. Importantly, the proposed probes permit resonance electromagnetic coupling to dielectric or printed conductive patterns, which leads to the possibility of very high raw image resolution with imaged feature-to-background contrast greater than 10-dB amplitude and 50° phase. In addition, high-resolution characterization of target geometries based on the cross correlation image processing technique is proposed and assessed using experimental data. It is shown that printed elements features with subwavelength size ~λ/15 or smaller can be characterized with at least 10-dB resolution contrast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water-sediment exchange is a fundamental component of oxyanion cycling in the environment. Yet, many of the (im)mobilization processes overlay complex spatial and temporal redox regimes that occur within millimeters of the interface. Only a few methods exist that can reliably capture these porewater fluxes, with the most popular being high-resolution diffusive gradients in thin films (HR-DGT). However, functionality of HR-DGT is restricted by the availability of suitable analyte binding agents within the sampler, which must be simple to cast and homogeneously distributed in the binding layer, exhibit adequate sorption capacities, be resistive to chemical change, and possess a very fine particle size (≤10 μm). A novel binding layer was synthesized to meet these requirements by in situ precipitation of zirconia into a precast hydrogel. The particle diameter ≤0.2 μm of zirconia in this precipitated gel was uniform and at least 50-times smaller than the conventional molding approach. Further, this gel had superior binding and stability characteristics compared with the commonly used ferrihydrite HR-DGT technique and could be easily fabricated as an ultrathin gel (60 μm) for simultaneous oxygen imaging in conjunction with planar-optodes. Chemical imaging of anion and oxygen fluxes using the new sampler were evaluated on Lake Taihu sediments.