140 resultados para GnRH-agonist


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Transient receptor potential (TRP) channels are widely, but not uniformly, distributed in tissues. To date the dominant focus of attention has been on TRP expression and functionality in neurons. However, their expression and activation in selected non-neuronal cells suggest TRPs have a potential role in coordinating cross-talk during the inflammatory process. Fibroblasts comprise the major cell type in the dental pulp and play an important role in pulpal inflammation. Objectives: The aim of this study was to investigate the expression and functionality of the TRP channels TRPA1, TRPM8, TRPV4 and TRPV1 in human dental pulp fibroblasts. Methods: Dental pulp fibroblasts were derived by explant culture of pulps removed from extracted healthy teeth. Fibroblasts were cultured in DMEM supplemented with 10% FCS, 100U/ml penicillin and 100µg/ml streptomycin. Protein expression of TRP channels was investigated by SDS- polyacrylamide gel electrophoresis and Western blotting of cell lysates from fibroblast cells in culture. TRPA1, TRPM8, TRPV4 and TRPV1 expression was determined by specific antibodies, detected using appropriate anti-species antibodies and chemiluminescence. Functionality of TRP channels was determined by Ca2+ microfluorimetry. Cells were grown on cover slips and incubated with Fura 2AM prior to stimulation with icilin (TRPA1 agonist), menthol (TRPM8 agonist), 4 alpha-phorbol 12,13-didecanoate (4alphaPDD) (TRPV4 agonist) or capsaicin (TRPV1 agonist). Emitted fluorescence (F340/F380) was used to determine intracellular [Ca2+] levels. Results: Fibroblast expression of TRPA1, TRPM8, TRPV4 and TRPV1 was confirmed at the protein level by Western blotting. Increased intracellular [Ca2+] levels in response to icillin, methanol, 4alphaPDD and capsacin, indicated functional expression of TRPA1, TRPM8, TRPV4 and TRPV respectively. Conclusions: The presence and functionality of TRP channels on dental pulp fibroblasts suggests a potential role for these cells in the pulpal neurogenic inflammatory response. (Supported by a research grant from the Royal College of Surgeons of Edinburgh).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Accumulating evidence supports a role for odontoblasts in initiating tooth pain, however direct ionic mechanisms underlying dentine nociceptive function remain unclear. The transient receptor potential (TRP) ion channels are directly related to cellular mechanisms of nociception and thermo-sensitive function but their expression by human odontoblasts remains to be determined. Objectives: To investigate the expression and functionality of the thermo-sensitive TRP channels TRPV1, TRPV4, TRPM8 and TRPA1 in human odontoblasts. Methods: Human odontoblasts were derived from dental pulp of immature permanent third molars by explant method. Cell lysates of odontoblasts were subject to SDS- polyacrylamide gel electrophoresis and proteins were blotted onto nitrocellulose membranes. Blots were probed with primary antibodies to TRPA1, TRPM8, TRPV4 and TRPV1. Detection of bound primary antibodies was achieved using appropriate anti-species antibody conjugates and chemiluminescent substrates. Functionality of the channels was determined with Ca2+ microfluorimetry, where cells grown in cover slips and incubated with Fura 2AM prior to stimulation with capsaicin (TRPV1 agonist), 4 alpha-phorbol 12,13-didecanoate (4áPDD) (TRPV4 agonist), icilin (TRPA1 agonist) and menthol (TRPM8 agonist). Emitted fluorescence was measured and the fluorescence ratio (R) was calculated as F340/F380 to determine the level of [Ca2+]i. Results: Western blotting confirmed the molecular localisation of thermo-sensitive TRP channels in human odontoblasts. Functionality assays revealed increase in [Ca2+]i in response to capsacin, icillin, methanol and 4áPDD indicating functional expression of TRPV1, TRPA1, TRPM8 and TRPV4 respectively. Conclusions: Functional expression of thermo-sensitive TRP channels in human odontoblasts may indicate a crucial role for odontoblasts in thermally induced dental pain. (Supported by a Research Grant from the Royal College of Surgeons of Edinburgh)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Protease activated receptors (PARs) are G-protein-coupled transmembrane receptors that are expressed on many cell types and implicated in various inflammatory processes in vivo. The induction of PAR2 as a result of the inflammatory response associated with dental caries remains to be determined. Objectives: The aim was to localise the expression of PAR2 in human dental pulp from carious teeth and to confirm receptor functionality using an in vitro assay. Methods: Dental pulp sections from decalcified carious teeth were examined by immunocytochemsitry. Membrane preparations from cultured pulp fibroblasts were subject to SDS-PAGE and immunoblotting to confirm fibroblast-associated immunoreactivity. The functionality of PAR2 on dental pulp fibroblasts was studied using calcium imaging in the presence of several potential activators including a PAR2 agonist (PAR2-AP), trypsin and pulpal enzymes from a carious tooth. Results: Immunocytochemistry revealed intense PAR2 immunoreactivity on pulpal fibroblasts subjacent to carious lesions but not in surrounding regions of the dental pulp. Pulp specimens from a dental injury model showed no expression of PAR2, suggesting its expression was related to cellular changes associated with ongoing caries. The localisation of PAR2 staining to pulpal fibroblasts in carious teeth was confirmed by Western blotting which revealed PAR2 immunoreactive bands in membrane fractions prepared from pulp fibroblasts. In functional studies, challenge of cultured pupal fibroblasts with PAR2-AP, trypsin and an extract of proteolytic enzymes from a carious dental pulp, showed specific activation of PAR2. Conclusions: This work demonstrates that PAR2 is functional and inducible in human dental pulp fibroblasts in response to caries and that endogenous pulpal enzymes can activate PAR2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Periodontal ligament (PDL) cells are exposed to physical forces in vivo in response to mastication, parafunction, speech and orthodontic tooth movement. Although it has been shown that PDL cells perceive and respond directly to mechanical stimulation, the nature of the ion channels that mediate this mechanotransduction remain to be fully elucidated. The transient receptor potential (TRP) superfamily of ion channels is believed to play a critical role in sensory physiology, where they act as transducers for thermal, chemical and mechanical stimuli. Recent studies have shown that members of the vanilloid (TRPV) and ankyrin (TRPA) subfamilies encode mechanosensitive TRPs. The vanilloid family member TRPV4 is one such non selective calcium permeable cationic channel which has been shown to be activated by chemical ligands, hypotonicity, and mechanical stimuli. Objectives: The objective of the current study was to investigate functional expression of TRPV4 in cultured human PDL cells. Methods: Human PDL cells were grown in Dulbecco's Modified Eagle Medium with L-glutamine supplemented with 10% fetal bovine serum (FBS), 100UI/ml penicillin and 100μg/ml streptomycin. Cells in passage 4-6 were used in all experiments. TRPV4 functional expression was determined using ratiometric calcium imaging. Cultured cells were loaded with intracellular Ca2+ probe fura-2 and cells were then stimulated with the TRPV4 agonists, 4alpha-phorbol 12,13-didecanoate (4alpha-PDD), GSK1016790A or hypotonic solution. The TRPV4 antagonist RN 1734 was used to block the corresponding agonist responses. Results: PDL fibroblasts responded to application of TRPV4 agonists and hypotonic stimuli by an increase in intracellular calcium which was attenuated in the presence of the TRPV4 antagonist. Conclusions: We have shown for the first time the functional expression of the mechanosensitive TRPV4 channel in human PDL cells. The molecular identity and mechanisms of activation of mechanosensitive TRP channels in PDL cells merit further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ligands targeting G protein-coupled receptors (GPCRs) are currently classified as either orthosteric, allosteric, or dualsteric/bitopic. Here, we introduce a new pharmacological concept for GPCR functional modulation: sequential receptor activation. A hallmark feature of this is a stepwise ligand binding mode with transient activation of a first receptor site followed by sustained activation of a second topographically distinct site. We identify 4-CMTB (2-(4-chlorophenyl)-3-methyl-N-(thiazol-2-yl)butanamide), previously classified as a pure allosteric agonist of the free fatty acid receptor 2, as the first sequential activator and corroborate its two-step activation in living cells by tracking integrated responses with innovative label-free biosensors that visualize multiple signaling inputs in real time. We validate this unique pharmacology with traditional cellular readouts, including mutational and pharmacological perturbations along with computational methods, and propose a kinetic model applicable to the analysis of sequential receptor activation. We envision this form of dynamic agonism as a common principle of nature to spatiotemporally encode cellular information.