146 resultados para Gagliardi, Paolo, 1675-1742.
Resumo:
Here we present the photoionization cross sections for the ground and metastable states of Cl-like Argon by exploiting the fully relativistic Breit-Pauli R-matrix computer codes to determine these transitions of interest. We compare our work with previous theoretical and experimental results and present a detailed investigation into the model of Ar III, the resonant structure and identification process.
Resumo:
Astrophysics is driven by observations, and in the present era there are a wealth of state-of-the-art ground-based and satellite facilities. The astrophysical spectra emerging from these are of exceptional quality and quantity and cover a broad wavelength range. To meaningfully interpret these spectra, astronomers employ highly complex modelling codes to simulate the astrophysical observations. Important input to these codes include atomic data such as excitation rates, photoionization cross sections, oscillator strengths, transition probabilities and energy levels/line wavelengths. Due to the relatively low temperatures associated with many astrophysical plasmas, the accurate determination of electron-impact excitation rates in the low energy region is essential in generating a reliable spectral synthesis. Hence it is these atomic data, and the main computational methods used to evaluate them, which we focus on in this publication. We consider in particular the complicated open d- shell structures of the Fe-peak ions in low ionization stages. While some of these data can be obtained experimentally, they are usually of insufficient accuracy or limited to a small number of transitions.
Resumo:
Accurate determination of electron excitation rates for the Fe-peak elements is complicated by the presence of an open 3d-shell in the description of the target ion, which can lead to hundreds of target state energy levels. Furthermore, the low energy scattering region is dominated by series of Rydberg resonances, which require a very fine energy mesh for their delineation. These problems have prompted the development of a suite of parallel R-matrix codes. In this work we report recent applications of these codes to the study of electron impact excitation of Ni III and Ni IV.
Resumo:
In this work we report both the calculation of atomic collision data for the electron-impact excitation of Ni II using parallel R-matrix codes and the computation of atomic transition data using the general atomic structure package CIV3.
Resumo:
A comparison of collision strengths and effective collision strengths has been undertaken for the Cr II ion based on the model of Wasson et al [2010 A & A. 524 A35]. Calculations have been completed using the Breit-Pauli, RMATRX II and DARC suites of codes.
Resumo:
The goal of this contribution is to discuss local computation in credal networks — graphical models that can represent imprecise and indeterminate probability values. We analyze the inference problem in credal networks, discuss how inference algorithms can benefit from local computation, and suggest that local computation can be particularly important in approximate inference algorithms.
Resumo:
Markov Decision Processes (MDPs) are extensively used to encode sequences of decisions with probabilistic effects. Markov Decision Processes with Imprecise Probabilities (MDPIPs) encode sequences of decisions whose effects are modeled using sets of probability distributions. In this paper we examine the computation of Γ-maximin policies for MDPIPs using multilinear and integer programming. We discuss the application of our algorithms to “factored” models and to a recent proposal, Markov Decision Processes with Set-valued Transitions (MDPSTs), that unifies the fields of probabilistic and “nondeterministic” planning in artificial intelligence research.
Resumo:
Fast electron energy spectra have been measured for a range of intensities between 1018 Wcm−2 and 1021 Wcm−2 and for different target materials using electron spectrometers. Several experimental campaigns were conducted on peta watt laser facilities at the Rutherford Appleton Laboratory and Osaka University. In these experimental campaigns, the pulse duration was varied from 0.5 ps to 5 ps. The laser incident angle was also changed from normal incidence to 40° in p-polarized. The results show a reduction from the ponderomotive scaling on fast electrons over 1020 Wcm−2.
Resumo:
BACKGROUND: Smoking is the most important individual risk factor for many cancer sites but its association with breast and prostate cancer is not entirely clear. Rate advancement periods (RAPs) may enhance communication of smoking related risk to the general population. Thus, we estimated RAPs for the association of smoking exposure (smoking status, time since smoking cessation, smoking intensity, and duration) with total and site-specific (lung, breast, colorectal, prostate, gastric, head and neck, and pancreatic) cancer incidence and mortality.
METHODS: This is a meta-analysis of 19 population-based prospective cohort studies with individual participant data for 897,021 European and American adults. For each cohort we calculated hazard ratios (HRs) for the association of smoking exposure with cancer outcomes using Cox regression adjusted for a common set of the most important potential confounding variables. RAPs (in years) were calculated as the ratio of the logarithms of the HRs for a given smoking exposure variable and age. Meta-analyses were employed to summarize cohort-specific HRs and RAPs.
RESULTS: Overall, 140,205 subjects had a first incident cancer, and 53,164 died from cancer, during an average follow-up of 12 years. Current smoking advanced the overall risk of developing and dying from cancer by eight and ten years, respectively, compared with never smokers. The greatest advancements in cancer risk and mortality were seen for lung cancer and the least for breast cancer. Smoking cessation was statistically significantly associated with delays in the risk of cancer development and mortality compared with continued smoking.
CONCLUSIONS: This investigation shows that smoking, even among older adults, considerably advances, and cessation delays, the risk of developing and dying from cancer. These findings may be helpful in more effectively communicating the harmful effects of smoking and the beneficial effect of smoking cessation.
Resumo:
BACKGROUND: Disability-adjusted life-years (DALYs) are an indicator of mortality, morbidity, and disability. We calculated DALYs for cancer in middle-aged and older adults participating in the Consortium on Health and Ageing Network of Cohorts in Europe and the United States (CHANCES) consortium.
METHODS: A total of 90 199 participants from five European cohorts with 10 455 incident cancers and 4399 deaths were included in this study. DALYs were calculated as the sum of the years of life lost because of premature mortality (YLLs) and the years lost because of disability (YLDs). Population-attributable fractions (PAFs) were also estimated for five cancer risk factors, ie, smoking, adiposity, physical inactivity, alcohol intake, and type II diabetes.
RESULTS: After a median follow-up of 12 years, the total number of DALYs lost from cancer was 34 474 (382 per 1000 individuals) with a similar distribution by sex. Lung cancer was responsible for the largest number of lost DALYs (22.9%), followed by colorectal (15.3%), prostate (10.2%), and breast cancer (8.7%). Mortality (81.6% of DALYs) predominated over disability. Ever cigarette smoking was the risk factor responsible for the greatest total cancer burden (24.0%, 95% confidence interval [CI] = 22.2% to 26.0%), followed by physical inactivity (4.9%, 95% CI = 0.8% to 8.1%) and adiposity (1.8%, 95% CI = 0.2% to 2.8%).
CONCLUSIONS: DALYs lost from cancer were substantial in this large European sample of middle-aged and older adults. Even if the burden of disease because of cancer is predominantly caused by mortality, some cancers have sizeable consequences for disability. Smoking remained the predominant risk factor for total cancer burden.