139 resultados para Facsimile transmission
Resumo:
We study multicarrier multiuser multiple-input multiple-output (MU-MIMO) systems, in which the base station employs an asymptotically large number of antennas. We analyze a fully correlated channel matrix and provide a beam domain channel model, where the channel gains are independent of sub-carriers. For this model, we first derive a closed-form upper bound on the achievable ergodic sum-rate, based on which, we develop asymptotically necessary and sufficient conditions for optimal downlink transmission that require only statistical channel state information at the transmitter. Furthermore, we propose a beam division multiple access (BDMA) transmission scheme that simultaneously serves multiple users via different beams. By selecting users within non-overlapping beams, the MU-MIMO channels can be equivalently decomposed into multiple single-user MIMO channels; this scheme significantly reduces the overhead of channel estimation, as well as, the processing complexity at transceivers. For BDMA transmission, we work out an optimal pilot design criterion to minimize the mean square error (MSE) and provide optimal pilot sequences by utilizing the Zadoff-Chu sequences. Simulations demonstrate the near-optimal performance of BDMA transmission and the advantages of the proposed pilot sequences.
Resumo:
The Groove Gap Waveguide (GGW) shows a behavior similar to the classical rectangular waveguide (RWG), but it is formed by two pieces which do not require metal contact. This feature suggests the GGW as a suitable alternative to the RGW for mm-wave frequencies, where ensuring the proper metal contact according to the wavelength size results challenging. Nevertheless, there is a lack of effective analysis tools for the complex GGW topology, and assuming a direct equivalence between the RGW and the GGW is too rough, so that dilatory full-wave simulations are required. This work presents a fast analysis method based on transmission line theory, which establishes the proper correspondence between the GGW and the RWG. In addition, below cutoff behavior of the GGW is studied for the first time. Several numerical tests and two manufactured prototypes validate the proposed method, which seems very adequate to optimize future GGW structures.
Resumo:
Passive intermodulation (PIM) often limits the performance of communication systems with analog and digitally-modulated signals and especially of systems supporting multiple carriers. Since the origins of the apparently multiple physical sources of nonlinearity causing PIM are not fully understood, the behavioral models are frequently used to describe the process of PIM generation. In this paper a polynomial model of memoryless nonlinearity is deduced from PIM measurements of a microstrip line with distributed nonlinearity with two-tone CW signals. The analytical model of nonlinearity is incorporated in Keysight Technology’s ADS simulator to evaluate the metrics of signal fidelity in the receive band for analog and digitally-modulated signals. PIM-induced distortion and cross-band interference with modulated signals are compared to those with two-tone CW signals. It is shown that conventional metrics can be applied to quantify the effect of distributed nonlinearities on signal fidelity. It is found that the two-tone CW test provides a worst-case estimate of cross-band interference for two-carrier modulated signals whereas with a three-carrier signal PIM interference in the receive band is noticeably overestimated. The simulated constellation diagrams for QPSK signals demonstrate that PIM interference exhibits the distinctive signatures of correlated distortion and this indicates that there are opportunities for mitigating PIM interference and that PIM interference cannot be treated as noise. One of the interesting results is that PIM distortion on a transmission line results in asymmetrical regrowth of output PIM interference for modulated signals.