202 resultados para Excitation controller


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report in this paper the computation of accurate total collision strengths and effective collision strengths for electron-impact excitation of FeII, using the parallel R-matrix program PRMAT. Target states corresponding to the 3d(6)4s, 3d(7), 3d(6)4p and 3d(5)4s4s basis configurations were included in the calculations giving rise to a 113 LS state 354 coupled channel problem. Following a detailed systematic study of correlation effects in both the target state and collision wavefunctions, it was found that an additional 21 configuration functions needed to be included in the Configuration Interaction expansion to obtain significantly more accurate target states and collision wavefunctions. This much improved 26-configuration model has been used to calculate converged total effective collision strengths for all sextet to quartet transitions among these levels with total spin S=2, giving a total of 1785 lines. These calculations have laid the foundation for an approach which may be adopted in the study of electron collisions with the low ionization stages of other iron peak elements. The work has been further extended with the commencement of a Breit-Pauli relativistic calculation for one of the smaller models and includes 262 fine-structure levels and over 1800 coupled channels. At the same time the PRMAT parallel R-matrix package is being extended to include relativistic effects which will allow us to attempt the more sophisticated 26-configuration model and produce for the first time the amount and quality of atomic data required to perform a meaningful synthesis of the Fe II spectrum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ar photoionization is studied using the R-matrix formalism with emphasis on the simultaneous excitation of the residual A^r+ ion. Cross sections have been obtained for excitation of the 3p^4(3d,4s,4p) states. A comparison with experiments having a resolution of 70 meV shows reasonable agreement for the position and shape of resonance structures. The relative magnitude of the resonances proves to be more elusive. The partial cross section for excitation of the 3p^4(3Pe)4p(2P_3/2^o) and (2D_3/2^o) levels is treated in more detail. A comparison of LS-coupling calculations with high-resolution experimental results shows good agreement for both the excitation cross sections and the polarization of the fluorescence. We also predict the orientation for both levels. We demonstrate that the polarization of the fluorescence originating from the (2D_3/2^o) level can be employed to study spin-orbit effects in Ar photoionization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic redistribution of an ion or atom induced by a sudden recoil of the nucleus occurring during the emission or capture of a neutral particle is theoretically investigated. For one-electron systems, analytical expressions are derived for the electronic transition probabilities to bound and continuum states. The quality of a B-spline basis set approach is evaluated from a detailed comparison with the analytical results. This numerical approach is then used Io study the dynamics of two-electron systems (neutral He and Ne ) using correlated wavefunctions for both the target and daughter ions. The total transition probabilities to discrete states, autoionizing states and direct single- and double-ionization probabilities are calculated from the pseudospectra. Sum rules for transition probabilities involving an initial bound state and a complete final series are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate fine-structure atomic data for the Fe-peak elements are essential for interpreting astronomical spectra. There is a severe paucity of data available for Sc II, highlighted by the fact that no collision strengths are readily available for this ion. We present electron-impact excitation collision strengths and Maxwellian averaged effective collision strengths for Sc II. The collision strengths were calculated for all 3916 transitions amongst 89 jj levels (arising from the 3d4s, 3d2, 4s2, 3d4p, 4s4p, 3d5s, 3d4d, 3d5p, 4p2 and 3d4f configurations), resulting in a 944 coupled channel problem. The R-matrix package RMATRXII was utilized, along with the transformation code FINE and the external region code PSTGF, to calculate the collision strengths for a range of incident electron energies in the 0 to 8.3 Rydberg region. Maxwellian averaged effective collision strengths were then produced for 27 temperatures lying within the astrophysically significant range of 30 to 105 K.
The collision strengths and effective collision strengths were produced for two different target models. The purpose was to systematically examine the effect of including open 3p correlation terms into the configuration interaction expansion for the wavefunction. The first model consisted of all 36 CI terms that could be generated with the 3p core closed. The second model incorporated an additional six configurations which allowed for single-electron excitations from within the 3p core. Comparisons are made between the two models and the results of Bautista et al., obtained by private communication. It is concluded that the first model produced the most reliable set of collision and effective collision strengths for use in astrophysical and plasma applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The excitation of surface plasmon-polariton (SPP) waveguide modes in subwavelength dielectric ridges deposited on a thin gold film has been characterized and optimized at telecommunication wavelengths. The experimental data on the electromagnetic mode structure obtained using scanning near-field optical microscopy have been directly compared to full vectorial three-dimensional finite element method simulations. Two excitation geometries have been investigated where SPPs are excited outside or inside the dielectric tapered region adjoint to the waveguide. The dependence of the efficiency of the SPP guided mode excitation on the taper opening angle has been measured and modeled. Single-mode guiding and strong lateral mode confinement of dielectric-loaded SPP waveguide modes have been characterized with the near-field measurements and compared to the effective-index method model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To develop real-time simulations of wind instruments, digital waveguides filters can be used as an efficient representation of the air column. Many aerophones are shaped as horns which can be approximated using conical sections. Therefore the derivation of conical waveguide filters is of special interest. When these filters are used in combination with a generalized reed excitation, several classes of wind instruments can be simulated. In this paper we present the methods for transforming a continuous description of conical tube segments to a discrete filter representation. The coupling of the reed model with the conical waveguide and a simplified model of the termination at the open end are described in the same way. It turns out that the complete lossless conical waveguide requires only one type of filter.Furthermore, we developed a digital reed excitation model, which is purely based on numerical integration methods, i.e., without the use of a look-up table.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that shape corrections have to be applied to the local-density (LDA) and generalized gradient (GGA) approximations to the Kohn-Sham exchange-correlation potential in order to obtain reliable response properties in time dependent density functional theory calculations. Here we demonstrate that it is an oversimplified view that these shape corrections concern primarily the asymptotic part of the potential, and that they affect only Rydberg type transitions. The performance is assessed of two shape-corrected Kohn-Sham potentials, the gradient-regulated asymptotic connection procedure applied to the Becke-Perdew potential (BP-GRAC) and the statistical averaging of (model) orbital potentials (SAOP), versus LDA and GGA potentials, in molecular response calculations of the static average polarizability alpha, the Cauchy coefficient S-4, and the static average hyperpolarizability beta. The nature of the distortions of the LDA/GGA potentials is highlighted and it is shown that they introduce many spurious excited states at too low energy which may mix with valence excited states, resulting in wrong excited state compositions. They also lead to wrong oscillator strengths and thus to a wrong spectral structure of properties like the polarizability. LDA, Becke-Lee-Yang-Parr (BLYP), and Becke-Perdew (BP) characteristically underestimate contributions to alpha and S-4 from bound Rydberg-type states and overestimate those from the continuum. Cancellation of the errors in these contributions occasionally produces fortuitously good results. The distortions of the LDA, BLYP, and BP spectra are related to the deficiencies of the LDA/GGA potentials in both the bulk and outer molecular regions. In contrast, both SAOP and BP-GRAC potentials produce high quality polarizabilities for 21 molecules and also reliable Cauchy moments and hyperpolarizabilities for the selected molecules. The analysis for the N-2 molecule shows, that both SAOP and BP-GRAC yield reliable energies omega(i) and oscillator strengths f(i) of individual excitations, so that they reproduce well the spectral structure of alpha and S-4.(C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Band excitation piezoresponse force microscopy enables local investigation of the nonlinear piezoelectric behavior of ferroelectric thin films. However, the presence of additional nonlinearity associated with the dynamic resonant response of the tip-surface junction can complicate the study of a material's nonlinearity. Here, the relative importance of the two nonlinearity sources was examined as a function of the excitation function. It was found that in order to minimize the effects of nonlinear tip-surface interactions but achieve good signal to noise level, an optimal excitation function must be used. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3593138]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent progress in plasma science and technology has enabled the development of a new generation of stable cold non-equilibrium plasmas operating at ambient atmospheric pressure. This opens horizons for new plasma technologies, in particular in the emerging field of plasma medicine. These non-equilibrium plasmas are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. The effect of a cold radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks. Plasma manipulation techniques for controlled energy delivery are highly desirable. Numerical simulations are employed for detailed investigations of the electron dynamics, which determines the generation of reactive species. New concepts based on nonlinear power dissipation promise superior strategies to control energy transport for tailored technological exploitations. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lovastatin biosynthesis depends on the relative concentrations of dissolved oxygen and the carbon and nitrogen resources. An elucidation of the underlying relationship would facilitate the derivation of a controller for the improvement of lovastatin yield in bioprocesses. To achieve this goal, batch submerged cultivation experiments of lovastatin production by Aspergillus flavipus BICC 5174, using both lactose and glucose as carbon sources, were performed in a 7 liter bioreactor and the data used to determine how the relative concentrations of lactose, glucose, glutamine and oxygen affected lovastatin yield. A model was developed based on these results and its prediction was validated using an independent set of batch data obtained from a 15-liter bioreactor using five statistical measures, including the Willmott index of agreement. A nonlinear controller was designed considering that dissolved oxygen and lactose concentrations could be measured online, and using the lactose feed rate and airflow rate as process inputs. Simulation experiments were performed to demonstrate that a practical implementation of the nonlinear controller would result in satisfactory outcomes. This is the first model that correlates lovastatin biosynthesis to carbon-nitrogen proportion and possesses a structure suitable for implementing a strategy for controlling lovastatin production.