159 resultados para Dust explosions.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study undertaken at the University of Liverpool has investigated the potential for using recycled demolition aggregate in the manufacture of precast concrete building blocks. Recycled aggregates derived from construction and demolition waste (C&DW) can be used to replace quarried limestone aggregate, usually used in coarse (6 mm) and fine (4 mm-to-dust) gradings. The manufacturing process used in factories, for large-scale production, involves a “vibro-compaction” casting procedure, using a relatively dry concrete mix with low cement content (˜100 kg/m3). Trials in the laboratory successfully replicated the manufacturing process using a specially modified electric hammer drill to compact the concrete mix into oversize steel moulds to produce blocks of the same physical and mechanical properties as the commercial blocks. This enabled investigations of the effect of partially replacing newly quarried with recycled demolition aggregate on the compressive strength of building blocks to be carried out in the laboratory. Levels of replacement of newly quarried with recycled demolition aggregate have been determined that will not have significant detrimental effect on the mechanical properties. Factory trials showed that there were no practical problems with the use of recycled demolition aggregate in the manufacture of building blocks. The factory strengths obtained confirmed that the replacement levels selected, based on the laboratory work, did not cause any significant strength reduction, i.e. there was no requirement to increase the cement content to maintain the required strength, and therefore there would be no additional cost to the manufacturers if they were to use recycled demolition aggregate for their routine concrete building block production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Passive equipments operating in the 30-300 GHZ (millimeter wave) band are compared to those in the 300 GHz-3 THz (submillimeter band). Equipments operating in the submillimeter band can measure distance and also spectral information and have been used to address new opportunities in security. Solid state spectral information is available in the submillimeter region making it possible to identify materials, whereas in millimeter region bulk optical properties determine the image contrast. The optical properties in the region from 30 GHz to 3 THz are discussed for some typical inorganic and organic solids. in the millimeter-wave region of the spectrum, obscurants such as poor weather, dust, and smoke can be penetrated and useful imagery generated for surveillance. in the 30 GHZ-3 THZ region dielectrics such as plastic and cloth are also transparent and the detection of contraband hidden under clothing is possible. A passive millimeter-wave imaging concept based on a folded Schmidt camera has been developed and applied to poor weather navigation and security. The optical design uses a rotating mirror and is folded using polarization techniques. The design is very well corrected over a wide field of view making it ideal for surveillance, and security. This produces a relatively compact imager which minimizes the receiver count.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The occurrence of amplitude-modulated electrostatic and electromagnetic
wavepackets in pair plasmas is investigated. A static additional charged background species is considered, accounting for dust defects or for heavy ion
presence in the background. Relying on a two-fluid description, a nonlinear
Schrodinger type evolution equation is obtained and analyzed, in terms of the
slow dynamics of the wave amplitude. Exact envelope excitations are obtained,
modelling envelope pulses or holes, and their characteristics are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A generalized linear theory for electromagnetic waves in a homogeneous dusty magnetoplasma is presented. The waves described are characterized by a frequency which is much smaller (larger) than the electron gyrofrequency (dust plasma and dust gyrofrequencies), and a long wavelength (in comparison with the ion gyroradius and the electron skin depth). The generalized Hall- magnetohydrodynamic (GH-MHD) equations are derived by assuming massive charged dust macroparticles to be immobile, and Fourier transformed to obtain a general dispersion relation. The latter is analyzed to understand the influence of immobile charged dust grains on various electromagnetic wave modes in a magnetized dusty plasma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A brief review of the occurrence of amplitude modulated structures in space and laboratory plasmas is provided, followed by a theoretical analysis of the mechanism of carrier wave (self-) interaction, with respect to electrostatic plasma modes. A generic collisionless unmagnetized fluid model is employed. Both cold-(zero-temperature) and warm-(finite temperature) fluid descriptions are considered and compared. The weakly nonlinear oscillation regime is investigated by applying a multiple scale (reductive perturbation) technique and a Nonlinear Schrödinger Equation (NLSE) is obtained, describing the evolution of the slowly varying wave amplitude in time and space. The amplitude’s stability profile reveals the possibility of modulational instability to occur under the influence of external perturbations. The NLSE admits exact localized envelope (solitary wave) solutions of bright (pulses) or dark (holes, voids) type, whose characteristics depend on intrinsic plasma parameters. The role of perturbation obliqueness (with respect to the propagation direction), finite temperature and — possibly — defect (dust) concentration is explicitly considered. The relevance of this description with respect to known electron-ion (e-i) as well as dusty (complex) plasma modes is briefly discussed. © 2004 American Institute of Physics

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study undertaken at the University of Liverpool has investigated the potential for using construction and demolition waste (C&DW) derived aggregate in the manufacture of a range of precast concrete products, i.e. building and paving blocks and pavement flags. Phase III, which is reported here, investigated
concrete pavement flags. This was subsequent to studies on building and paving blocks. Recycled demolition aggregate can be used to replace newly quarried limestone aggregate, usually used in coarse (6 mm) and fine (4 mm-to-dust) gradings. The first objective was, as was the case with concrete building
and paving blocks, to replicate the process used by industry in fabricating concrete pavement flags in the laboratory. The ‘‘wet’’ casting technique used by industry for making concrete flags requires a very workable mix so that the concrete flows into the mould before it is compressed. Compression squeezes out water from the top as well as the bottom of the mould. This industrial casting procedure was successfully replicated in the laboratory by using an appropriately modified cube crushing machine and a special mould typical of what is used by industry. The mould could be filled outside of the cube crushing machine and then rolled onto a steel frame and into the machine for it to be compressed. The texture and mechanical properties of the laboratory concrete flags were found to be similar to the factory ones. The experimental work involved two main series of tests, i.e. concrete flags made with concrete- and
masonry-derived aggregate. Investigation of flexural strength was required for concrete paving flags. This is different from building blocks and paving blocks which required compressive and tensile splitting strength respectively. Upper levels of replacement with recycled demolition aggregate were determined
that produced similar flexural strength to paving flags made with newly quarried aggregates, without requiring an increase in the cement content. With up to 60% of the coarse or 40% of the fine fractions replaced with concrete-derived aggregates, the target mean flexural strength of 5.0 N/mm2 was still
achieved at the age of 28 days. There was similar detrimental effect by incorporating the fine masonry-derived aggregate. A replacement level of 70% for coarse was found to be satisfactory and also conservative. However, the fine fraction replacement could only be up to 30% and even reduced to 15% when used for mixes where 60% of the coarse fraction was also masonry-derived aggregate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, palaeoenvironmental changes recorded in the top metre of a peat profile (Misten bog, East Belgium) were investigated using a multiproxy approach. Proxies include bulk density, Ti and Si content, pollen, macrofossils, d13C on specific Sphagnum stems, and d13C–d18O on Sphagnum leaves. A high-resolution chronology was generated using 210Pb measurements and 22 14C AMS dates on carefully selected Sphagnum macrofossils. d13C only records large change in mire surface wetness. This is partly due to the fact that the core was taken from the edge of a hummock, which may make it difficult to track small isotopic changes. The d13C signal seems to be dependent upon the Sphagnum species composition. For example, a change between Sphagnum section Cuspidata towards Sphagnum imbricatum causes a significant drop in the d13C values. On the whole, the C and O isotopes record two shallow pool phases during the 8th–9th and the 13th centuries. Pollen and atmospheric soil dust (ASD) fluxes records increased human occupation in the area. There may be some climatic signals in the ASD flux, but they are difficult to decipher from the increasing human impact (land clearance, agriculture) during the last millennium. The variations in the proxies are not always synchronous, suggesting different triggering factors (temperature, wetness, windiness) for each proxy. This study also emphasizes that, compared to studies dealing with pollution using geochemical proxies, palaeoclimatic inferences from peat bogs need as many proxies as possible, together with highly accurate and precise age-models, in order to better understand climate variability and their consequences during the Holocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite concern about the harmful effects of substances contained in various
plastic consumer products, little attention has focused on the more heavily
exposed women working in the plastics industry. Through a review of the
toxicology, industrial hygiene, and epidemiology literatures in conjunction
with qualitative research, this article explores occupational exposures in producing
plastics and health risks to workers, particularly women, who make up
a large part of the workforce. The review demonstrates that workers are
exposed to chemicals that have been identified as mammary carcinogens and
endocrine disrupting chemicals, and that the work environment is heavily
contaminated with dust and fumes. Consequently, plastics workers have a
body burden that far exceeds that found in the general public.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Star formation often occurs within or nearby stellar clusters. Irradiation by nearby massive stars can photoevaporate protoplanetary disks around young stars (so-called proplyds) which raises questions regarding the ability of planet formation to take place in these environments. We investigate the two-dimensional physical and chemical structure of a protoplanetary disk surrounding a low-mass (T Tauri) star which is irradiated by a nearby massive O-type star to determine the survivability and observability of molecules in proplyds. Compared with an isolated star-disk system, the gas temperature ranges from a factor of a few (in the disk midplane) to around two orders of magnitude (in the disk surface) higher in the irradiated disk. Although the UV flux in the outer disk, in particular, is several orders of magnitude higher, the surface density of the disk is sufficient for effective shielding of the disk midplane so that the disk remains predominantly molecular in nature. We also find that non-volatile molecules, such as HCN and H2O, are able to freeze out onto dust grains in the disk midplane so that the formation of icy planetesimals, e.g., comets, may also be possible in proplyds. We have calculated the molecular line emission from the disk assuming LTE and determined that multiple transitions of atomic carbon, CO (and isotopologues, 13CO and C18O), HCO+, CN, and HCN may be observable with ALMA, allowing characterization of the gas column density, temperature, and optical depth in proplyds at the distance of Orion (˜400 pc).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Explosions of sub-Chandrasekhar-mass white dwarfs (WDs) are one alternative to the standard Chandrasekhar-mass model of Type Ia supernovae (SNe Ia). They are interesting since binary systems with sub-Chandrasekhar-mass primary WDs should be common and this scenario would suggest a simple physical parameter which determines the explosion brightness, namely the mass of the exploding WD. Here we perform one-dimensional hydrodynamical simulations, associated post-processing nucleosynthesis, and multi-wavelength radiation transport calculations for pure detonations of carbon-oxygen WDs. The light curves and spectra we obtain from these simulations are in good agreement with observed properties of SNe Ia. In particular, for WD masses from 0.97 to 1.15 Msun we obtain 56Ni masses between 0.3 and 0.8 Msun, sufficient to capture almost the complete range of SN Ia brightnesses. Our optical light curve rise times, peak colors, and decline timescales display trends which are generally consistent with observed characteristics although the range of B-band decline timescales displayed by our current set of models is somewhat too narrow. In agreement with observations, the maximum light spectra of the models show clear features associated with intermediate-mass elements and reproduce the sense of the observed correlation between explosion luminosity and the ratio of the Si II lines at ?6355 and ?5972. We therefore suggest that sub-Chandrasekhar-mass explosions are a viable model for SNe Ia for any binary evolution scenario leading to explosions in which the optical display is dominated by the material produced in a detonation of the primary WD. © 2010. The American Astronomical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the double-detonation scenario for Type Ia supernovae, it is suggested that a detonation initiates in a shell of helium-rich material accreted from a companion star by a sub-Chandrasekhar-mass white dwarf. This shell detonation drives a shock front into the carbon-oxygen white dwarf that triggers a secondary detonation in the core. The core detonation results in a complete disruption of the white dwarf. Earlier studies concluded that this scenario has difficulties in accounting for the observed properties of Type Ia supernovae since the explosion ejecta are surrounded by the products of explosive helium burning in the shell. Recently, however, it was proposed that detonations might be possible for much less massive helium shells than previously assumed (Bildsten et al.). Moreover, it was shown that even detonations of these minimum helium shell masses robustly trigger detonations of the carbon-oxygen core (Fink et al.). Therefore, it is possible that the impact of the helium layer on observables is less than previously thought. Here, we present time-dependent multi-wavelength radiative transfer calculations for models with minimum helium shell mass and derive synthetic observables for both the optical and ? -ray spectral regions. These differ strongly from those found in earlier simulations of sub-Chandrasekhar-mass explosions in which more massive helium shells were considered. Our models predict light curves that cover both the range of brightnesses and the rise and decline times of observed Type Ia supernovae. However, their colors and spectra do not match the observations. In particular, their B - V colors are generally too red. We show that this discrepancy is mainly due to the composition of the burning products of the helium shell of the Fink et al. models which contain significant amounts of titanium and chromium. Using a toy model, we also show that the burning products of the helium shell depend crucially on its initial composition. This leads us to conclude that good agreement between sub-Chandrasekhar-mass explosions and observed Type Ia supernovae may still be feasible but further study of the shell properties is required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motivated by recent models involving off-centre ignition of Type Ia supernova explosions, we undertake three-dimensional time-dependent radiation transport simulations to investigate the range of bolometric light-curve properties that could be observed from supernovae in which there is a lop-sided distribution of the products from nuclear burning. We consider both a grid of artificial toy models which illustrate the conceivable range of effects and a recent three-dimensional hydrodynamical explosion model. We find that observationally significant viewing angle effects are likely to arise in such supernovae and that these may have important ramifications for the interpretation of the observed diversity of Type Ia supernova and the systematic uncertainties which relate to their use as standard candles in contemporary cosmology. © 2007 RAS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermonuclear explosions may arise in binary star systems in which a carbon-oxygen (CO) white dwarf (WD) accretes helium-rich material from a companion star. If the accretion rate allows a sufficiently large mass of helium to accumulate prior to ignition of nuclear burning, the helium surface layer may detonate, giving rise to an astrophysical transient. Detonation of the accreted helium layer generates shock waves that propagate into the underlying CO WD. This might directly ignite a detonation of the CO WD at its surface (an edge-lit secondary detonation) or compress the core of the WD sufficiently to trigger a CO detonation near the centre. If either of these ignition mechanisms works, the two detonations (helium and CO) can then release sufficient energy to completely unbind the WD. These 'double-detonation' scenarios for thermonuclear explosion of WDs have previously been investigated as a potential channel for the production of Type Ia supernovae from WDs of ~ 1 M . Here we extend our 2D studies of the double-detonation model to significantly less massive CO WDs, the explosion of which could produce fainter, more rapidly evolving transients. We investigate the feasibility of triggering a secondary core detonation by shock convergence in low-mass CO WDs and the observable consequences of such a detonation. Our results suggest that core detonation is probable, even for the lowest CO core masses that are likely to be realized in nature. To quantify the observable signatures of core detonation, we compute spectra and light curves for models in which either an edge-lit or compression-triggered CO detonation is assumed to occur. We compare these to synthetic observables for models in which no CO detonation was allowed to occur. If significant shock compression of the CO WD occurs prior to detonation, explosion of the CO WD can produce a sufficiently large mass of radioactive iron-group nuclei to significantly affect the light curves. In particular, this can lead to relatively slow post-maximum decline. If the secondary detonation is edge-lit, however, the CO WD explosion primarily yields intermediate-mass elements that affect the observables more subtly. In this case, near-infrared observations and detailed spectroscopic analysis would be needed to determine whether a core detonation occurred. We comment on the implications of our results for understanding peculiar astrophysical transients including SN 2002bj, SN 2010X and SN 2005E. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We carry out the first multi-dimensional radiative transfer calculations to simultaneously compute synthetic spectra and light curves for models of supernovae driven by fast bipolar outflows. These allow us to make self-consistent predictions for the orientation dependence of both color evolution and spectral features. We compare models with different degrees of asphericity and metallicity and find significant observable consequences of both. In aspherical models, we find spectral and light curve features that vary systematically with observer orientation. In particular, we find that the early-phase light curves are brighter and bluer when viewed close to the polar axis but that the peak flux is highest for equatorial (off-axis) inclinations. Spectral line features also depend systematically on observer orientation, including the velocity of the Si II 6355 Å line. Consequently, our models predict a correlation between line velocity and color that could assist the identification of supernovae associated with off-axis jet-driven explosions. The amplitude and range of this correlation depends on the degree of asphericity, the metallicity, and the epoch of observation but we find that it is always present and acts in the same direction. © 2012. The American Astronomical Society. All rights reserved..

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the most important questions regarding the progenitor systems of Type Ia supernovae (SNe Ia) is whether mergers of two white dwarfs can lead to explosions that reproduce observations of normal events. Here we present a fully three-dimensional simulation of a violent merger of two carbon-oxygen white dwarfs with masses of 0.9 M and 1.1 M combining very high resolution and exact initial conditions. A well-tested combination of codes is used to study the system. We start with the dynamical inspiral phase and follow the subsequent thermonuclear explosion under the plausible assumption that a detonation forms in the process of merging. We then perform detailed nucleosynthesis calculations and radiative transfer simulations to predict synthetic observables from the homologously expanding supernova ejecta. We find that synthetic color light curves of our merger, which produces about 0.62 M of Ni, show good agreement with those observed for normal SNe Ia in all wave bands from U to K. Line velocities in synthetic spectra around maximum light also agree well with observations. We conclude that violent mergers of massive white dwarfs can closely resemble normal SNe Ia. Therefore, depending on the number of such massive systems available these mergers may contribute at least a small fraction to the observed population of normal SNe Ia. © 2012 The American Astronomical Society. All rights reserved.