148 resultados para Custom 465
Resumo:
We describe experiments designed to produce a bright M-L band x-ray source in the 3-3.5 keV region. Palladium targets irradiated with a 10(15) W cm(-2) laser pulse have previously been shown to convert up to similar to 2% of the laser energy into M-L band x-rays with similar pulse duration to that of the incident laser. This x-ray emission is further characterized here, including pulse duration and source size measurements, and a higher conversion efficiency than previously achieved is demonstrated (similar to 4%) using more energetic and longer duration laser pulses (200 ps). The emission near the aluminium K-edge (1.465-1.550 keV) is also reported for similar conditions, along with the successful suppression of such lower band x-rays using a CH coating on the rear side of the target. The possibility of using the source to radiatively heat a thin aluminium foil sample to uniform warm dense matter conditions is discussed.
Resumo:
Ionic liquid gel materials offer a way to further utilise ionic liquids in technological applications. Combining the controlled and directed assembly of gels, with the diverse applications of ionic liquids, enables the design of a heady combination of functional tailored materials, leading to the development of task specific / functional ionic liquid gels. This review introduces gels and gel classification, focusing on ionic liquid gels and their potential roles in a more sustainable future. Ionic liquid gels provide the ability to build functionality at every level, the solid component, the ionic liquid, and any incorporated active functional agents. This allows materials to be custom designed for a vast assortment of applications. This diverse class of materials has the potential to yield functional materials for green and sustainable chemistry, energy, electronics, medicine, food, cosmetics, and more. The discussion of the development of ionic liquid gel materials for applications in green and sustainable chemistry centres on uses of ionic liquid gels in catalysis and energy.
Resumo:
Field programmable gate array devices boast abundant resources with which custom accelerator components for signal, image and data processing may be realised; however, realising high performance, low cost accelerators currently demands manual register transfer level design. Software-programmable ’soft’ processors have been proposed as a way to reduce this design burden but they are unable to support performance and cost comparable to custom circuits. This paper proposes a new soft processing approach for FPGA which promises to overcome this barrier. A high performance, fine-grained streaming processor, known as a Streaming Accelerator Element, is proposed which realises accelerators as large scale custom multicore networks. By adopting a streaming execution approach with advanced program control and memory addressing capabilities, typical program inefficiencies can be almost completely eliminated to enable performance and cost which are unprecedented amongst software-programmable solutions. When used to realise accelerators for fast fourier transform, motion estimation, matrix multiplication and sobel edge detection it is shown how the proposed architecture enables real-time performance and with performance and cost comparable with hand-crafted custom circuit accelerators and up to two orders of magnitude beyond existing soft processors.
Resumo:
Static timing analysis provides the basis for setting the clock period of a microprocessor core, based on its worst-case critical path. However, depending on the design, this critical path is not always excited and therefore dynamic timing margins exist that can theoretically be exploited for the benefit of better speed or lower power consumption (through voltage scaling). This paper introduces predictive instruction-based dynamic clock adjustment as a technique to trim dynamic timing margins in pipelined microprocessors. To this end, we exploit the different timing requirements for individual instructions during the dynamically varying program execution flow without the need for complex circuit-level measures to detect and correct timing violations. We provide a design flow to extract the dynamic timing information for the design using post-layout dynamic timing analysis and we integrate the results into a custom cycle-accurate simulator. This simulator allows annotation of individual instructions with their impact on timing (in each pipeline stage) and rapidly derives the overall code execution time for complex benchmarks. The design methodology is illustrated at the microarchitecture level, demonstrating the performance and power gains possible on a 6-stage OpenRISC in-order general purpose processor core in a 28nm CMOS technology. We show that employing instruction-dependent dynamic clock adjustment leads on average to an increase in operating speed by 38% or to a reduction in power consumption by 24%, compared to traditional synchronous clocking, which at all times has to respect the worst-case timing identified through static timing analysis.
Resumo:
Software-programmable `soft' processors have shown tremendous potential for efficient realisation of high performance signal processing operations on Field Programmable Gate Array (FPGA), whilst lowering the design burden by avoiding the need to design fine-grained custom circuit archi-tectures. However, the complex data access patterns, high memory bandwidth and computational requirements of sliding window applications, such as Motion Estimation (ME) and Matrix Multiplication (MM), lead to low performance, inefficient soft processor realisations. This paper resolves this issue, showing how by adding support for block data addressing and accelerators for high performance loop execution, performance and resource efficiency over four times better than current best-in-class metrics can be achieved. In addition, it demonstrates the first recorded real-time soft ME estimation realisation for H.263 systems.
Resumo:
The increasing design complexity associated with modern Field Programmable Gate Array (FPGA) has prompted the emergence of 'soft'-programmable processors which attempt to replace at least part of the custom circuit design problem with a problem of programming parallel processors. Despite substantial advances in this technology, its performance and resource efficiency for computationally complex operations remains in doubt. In this paper we present the first recorded implementation of a softcore Fast-Fourier Transform (FFT) on Xilinx Virtex FPGA technology. By employing a streaming processing architecture, we show how it is possible to achieve architectures which offer 1.1 GSamples/s throughput and up to 19 times speed-up against the Xilinx Radix-2 FFT dedicated circuit with comparable cost.
Resumo:
In this paper we identify requirements for choosing a threat modelling formalisation for modelling sophisticated malware such as Duqu 2.0. We discuss the gaps in current formalisations and propose the use of Attack Trees with Sequential Conjunction when it comes to analysing complex attacks. The paper models Duqu 2.0 based on the latest information sourced from formal and informal sources. This paper provides a well structured model which can be used for future analysis of Duqu 2.0 and related attacks.
Resumo:
Our objective is to define differences in circulating lipoprotein subclasses between intensive vs. conventional management of Type 1 diabetes during the randomization phase of the Diabetes Control and Complications Trial (DCCT). Nuclear magnetic resonance-determined lipoprotein subclass profiles (NMR-LSP), which estimate molar subclass concentrations and mean particle diameters, were determined in 1,294 DCCT subjects after a median of five (interquartile range: four, six) years following randomization to intensive or conventional diabetes management. In cross-sectional analyses, we compared standard lipids and NMR-LSP between treatment groups. Standard total-, LDL- and HDL-cholesterol levels were similar between randomization groups, while triglyceride levels were lower in the intensively treated group. NMR-LSP showed that intensive therapy was associated with larger LDL diameter (20.7 vs. 20.6 nm, p=0.01) and lower levels of small LDL (median: 465 vs. 552 nmol/l, p=0.007), total IDL/LDL (mean: 1000 vs. 1053 nmol/l, p=0.01), and small HDL (mean: 17.3 vs. 18.6 μmol/l, p<0.0001), the latter accounting for reduced total HDL (mean: 33.8 vs. 34.8 μmol/l, p=0.01). In conclusion, intensive diabetes therapy was associated with potentially favorable changes in LDL and HDL subclasses in sera. Further research will determine whether these changes contribute to the beneficial effects of intensive diabetes management on vascular complications.
Resumo:
Introduction: Ca2+ ion is an important intracellular messenger essential for the regulation of various cellular functions including proliferation, differentiation and apoptosis. Transient Receptor Potential (TRP) channels are calcium permeable cationic channels that play important role in regulation of free intracellular calcium ([Ca2+]i) in response to thermal, physical and chemical stimuli. Ca2+ signalling in human dental pulp stem cells (hDPSCs) and the ion channels regulating Ca2+ are largely not known. Objectives: Investigate changes in [Ca2+]i and determine the ion channels that regulate calcium signalling in hDPSCs. Methods: DPSCs were derived from immature third molars and cells less than passage 6 were used in all the experiments. Changes in [Ca2+]i were studied with Fura2 calcium imaging. RNA was extracted from DPSCs and a panel of TRP channel gene expression was determined by qPCR employing custom designed FAM TRP specific primers and probes (Roche, UK) and the Light Cycler 480 Probes Master (Roche). Results: hDPSCs express gene transcripts for all TRP families including TRPV1, V2, V4, TRPA1, TRPC3, TRPC5, TRPC6, TRPM3, TRPM7 and TRPP2. Stimulation of cells with appropriate TRP channel agonist induced increase in [Ca2+]i and similar responses were obtained when cell were mechanically stimulated by membrane stretch with application of hypotonic solution. Conclusion: TRP channels mediate calcium signalling in hDPSCs that merit further investigation.
Resumo:
Background: The transient receptor potential (TRP) ion channels play a critical role in sensory physiology, where they act as transducers of thermal, mechanical and chemical stimuli. We have previously shown the functional expression of several TRP channels by human odontoblast-like cells and proposed their significance in odontoblast sensory perception. Functional expression of the mechano-sensitiveTRPV2 channel by human odontoblasts would further support a role for TRP channels in odontoblast physiology. Objective: The objective of the current study was to determine the functional expression of TRPV2 by human odontoblasts. Methods: Human dental pulp cells were cultured in the presence of 2 mM β-glycerophoshate to induce an odontoblast phenotype. TRPV2 gene expression was determined by qPCR employing custom designed FAM TRPV2 specific primers and probes (Roche, UK) and the Light Cycler 480 Probes Master (Roche). TRPV2 protein expression was determined following SDS-PAGE and Western blotting of cell lysate preparations. Functional expression of TRPV2 was investigated by Ca2+ microfluorimetry. Results: qPCR data indicated robust expression of TRPV2 in odontoblast-like cells. Western blotting revealed a discrete immunoreactive protein band indicating expression of TRPV2 in cell lysates. In functional assays, the chemical agonist of TRPV2, cannabidiol, was shown to elicit [Ca2+]i transients, that were reduced to baseline in the presence of the TRPV2 antagonist Tranilast, suggesting channel functionality in odontoblast-like cells. Conclusion: These results provide the first evidence for the functional expression of TRPV2 in human odontoblast-like cells, providing further support for the role of TRP channels in odontoblast physiology.
Resumo:
OBJECTIVE:
To assess short- and long-term control of intraocular pressure (IOP) with different surgical treatment strategies for coexisting cataract and glaucoma.
DESIGN:
Systematic literature review and analysis.
METHOD:
We performed a search of the published literature to identify all eligible articles pertaining to the surgical management of coexisting cataract and glaucoma in adults. One investigator abstracted the content of each article onto a custom-designed form. A second investigator corroborated the findings. The evidence supporting different approaches was graded by consensus as good, fair, weak, or insufficient.
MAIN OUTCOME MEASURES:
Short-term (24 hours or fewer) and long-term (more than 24 hours) IOP control.
RESULTS:
The evidence was good that long-term IOP is lowered more by combined glaucoma and cataract operations than by cataract operations alone. On average, the IOP was 3 to 4 mmHg lower in the combined groups with fewer medications required. The evidence was weak that extracapsular cataract extraction (ECCE) alone results in short-term increase in IOP and was insufficient to determine the short-term impact of phacoemulsification cataract extraction (PECE) on IOP in glaucoma patients. The evidence was weak that short-term IOP control was better with ECCE or PECE combined with an incisional glaucoma procedure compared with ECCE or PECE alone. The evidence was also weak (but consistent) that long-term IOP is lowered by 2 to 4 mmHg after ECCE or PECE. Finally, there was weak evidence that combined PECE and trabeculectomy produces slightly worse long-term IOP control than trabeculectomy alone, and there was fair evidence that the same is true for ECCE combined with trabeculectomy.
CONCLUSIONS:
There is strong evidence for better long-term control of IOP with combined glaucoma and cataract operations compared with cataract surgery alone. For other issues regarding surgical treatment strategies for cataract and glaucoma, the available evidence is limited or conflicting.
Resumo:
This chapter reviews the recent observations of waves and oscillations manifesting in fine-scale magnetic structures in the solar photosphere, which are often interpreted as the "building blocks' of the magnetic Sun. The authors found, through phase relationships between the various waveforms, that small-scale magnetic bright points (MBPs) in the photosphere demonstrated signatures of specific magnetoacoustic waves, in particular the sausage and kink modes. Modern magnetohydrodynamic (MHD) simulations of the lower solar atmosphere clearly show how torsional motions can easily be induced in magnetic elements in the photosphere through the processes of vortical motions and/or buffeting by neighboring granules. The authors detected significant power associated with high-frequency horizontal motions, and suggested that these cases may be especially important in the creation of a turbulent environment that efficiently promotes Alfvén wave dissipation.
Resumo:
We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color-color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 104 K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100. Based on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium, based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofsica de Canarias, and observations, and based on observations made with the ESO Telescopes at the La Silla Paranal Observatory under programme ID 085.D-0501(A).